1.
Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des.
15(1), 7–48 (1999)
CrossRefMathSciNet2.
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) Proceedings of the 8th International Conference on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1102, pp. 269–276. Springer, Berlin Heidelberg New York (1996)
3.
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Modelchecking continuous-time Markov chains. ACM Trans. Comput. Logic
1(1), 162–170 (2000)
CrossRefMathSciNet4.
Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 188–191. IEEE Press, New York (1993)
5.
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) Proceedings of the 12th International Conference on Computer-Aided Verification, Lecture Notes in Computer Science, vol. 1855, pp. 358–372. Springer, Berlin Heidelberg New York (2000)
6.
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans Softw. Eng.
29(6), 524–541 (2003)
CrossRef7.
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)
8.
Buchholz, P.: A new approach combining simulation and randomization for the analysis of large continuous time Markov chains. ACM Trans. Model. Comput. Simulat.
8(2), 194–222 (1998)
CrossRefMathSciNetMATH9.
Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M.: Spectral transforms for large Boolean functions with applications to technology mapping. In: Proceedings of the 30th International Conference on Design Automation, pp. 54–60. ACM Press, New York (1993)
10.
Fox, B.L.: Numerical methods for transient Markov chains. Technical Report No. 810. School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY (1988)
11.
Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Commun. ACM
31(4), 440–445 (1988)
CrossRefMathSciNet12.
Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multiterminal binary decision diagrams: an efficient data structure for matrix representation. Formal Methods Syst. Des.
10(2/3), 149–169 (1997)
CrossRef13.
Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision diagrams to represent and analyse continuous time Markov chains. In: Plateau, B., Stewart, W.J., Silva, M. (eds.) Proceedings of the 3rd International Workshop on the Numerical Solution of Markov Chains, pp. 188–207. Prensas Universitarias de Zaragoza (1999)
14.
Hogg, R.V., Craig, A.T.: Introduction to Mathematical Statistics, 4th edn. Macmillan, New York (1978)
15.
Ibe, O.C., Trivedi, K.S.: Stochastic Petri net models of polling systems. IEEE J. Select. Areas Commun.
8(9), 1649–1657 (1990)
CrossRef16.
Infante López, G.G., Hermanns, H., Katoen, J.-P.: Beyond memoryless distributions: Model checking semi-Markov chains. In: de Alfaro, L., Gilmore, S. (eds.) Proceedings of the 1st Joint International PAPM-PROBMIV Workshop. Lecture Notes in Computer Science, vol. 2165, pp. 57–70. Springer, Berlin Heidelberg New York (2001)
17.
Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Skandinavisk Aktuarietidskrift 36, 87–91 (1953)
18.
Katoen, J.-P., Kwiatkowska, M., Norman, G., Parker, D.: Faster and symbolic CTMC model checking. In: de Alfaro, L., Gilmore, S. (eds.) Proceedings of the 1st Joint International PAPM-PROBMIV Workshop. Lecture Notes in Computer Science, vol. 2165, pp. 23–38. Springer, Berlin Heidelberg New York (2001)
19.
Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) Proceedings of the 12th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation. Lecture Notes in Computer Science, vol. 2324, pp. 200–204. Springer, Berlin Heidelberg New York (2002)
20.
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transfer
6(2), 128–142 (2004)
CrossRef21.
Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) Proceedings of the 11th International Conference on Concurrency Theory. Lecture Notes in Computer Science, vol. 1877, pp. 123–137. Springer, Berlin Heidelberg New York (2000)
22.
Lai, T.L.: Nearly optimal squential tests of composite hypotheses. Ann. Stat.
16(2), 856–886 (1988)
MATH23.
Lai, T.L.: Sequential analysis: some classical problems and new challenges. Statistica Sinica
11(2), 303–408 (2001)
MathSciNetMATH24.
Malhotra, M., Muppala, J.K., Trivedi, K.S.: Stiffnesstolerant methods for transient analysis of stiff Markov chains. Microelectron. Reliabil.
34(11), 1825–1841 (1994)
CrossRef25.
Parker, D.: Implementation of symbolic model checking for probabilistic systems. PhD Thesis, University of Birmingham (2002)
26.
Reibman, A., Trivedi, K.S.: Numerical transient analysis of Markov models. Comput. Operat. Res.
15(1), 19–36 (1988)
CrossRefMATH27.
Schwarz, G.: Asymptotic shapes of Bayes sequential testing regions. Ann. Math. Stat.
33(1), 224–236 (1962)
MATH28.
Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) Proceedings of the 16th International Conference on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 3114, pp. 202–215. Springer, Berlin Heidelberg New York (2004)
29.
Shanthikumar, J.G., Sargent, R.G.: A unifying view of hybrid simulation/analytic models and modeling. Operat. Res.
31(6), 1030–1052 (1983)
CrossRefMATH30.
Stewart,W.J.: A comparison of numerical techniques in Markov modeling. Commun. ACM
21(2), 144–152 (1978)
CrossRefMATH31.
Teichroew, D., Lubin, J.F.: Computer simulation—Discussion of the techniques and comparison of languages. Commun. ACM
9(10), 723–741 (1966)
CrossRef32.
Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat.
16(2), 117–186 (1945)
MathSciNetMATH33.
Wald, A.: Sequential Analysis. Wiley, New York (1947)
MATH34.
Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Stat.
19(3), 326–339 (1948)
MathSciNetMATH35.
Younes, H.L.S.: Probabilistic verification for “black-box” systems. In: Etessami, K., Rajamani, S. (eds.) Proceedings of the 17th International Conference on Computer-Aided Verification. Springer, Berlin Heidelberg New York (2005)
36.
Younes, H.L.S., Musliner, D.J., Simmons, R.G.: A framework for planning in continuous-time stochastic domains. In: Giunchiglia, E., Muscettola, N., Nau, D.S. (eds.) Proceedings of the 13th International Conference on Automated Planning and Scheduling, pp. 195–204. AAAI Press, Meno Park, CA (2003)
37.
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) Proceedings of the 14th International Conference on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 2404, pp. 223–235. Springer, Berlin Heidelberg New York (2002)