Skip to main content
Log in

Influence of chemical composition and amount of intermixed ionomer in the catalyst on the oxygen reduction reaction characteristics

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Influence of chemical composition of the ionomers (polyvinyl alcohol (PVA) or Nafion®) on the oxygen reduction reaction (ORR) kinetics has been studied. The 5 wt% Nafion-Vulcan showed higher electrochemical activity toward ORR compared with that for the 5 wt% PVA-Vulcan. Four different Nafion® amounts were used to intermixing a carbide-derived carbon (CDC) or Pt-modified CDC catalysts and the highest electrochemical activity toward ORR was established for the 30 wt% Nafion-Pt/CDC catalyst. Influence of the different amounts of Nafion® ionomer in the catalyst is moderate compared to the effect of variation of the carbon support (Vulcan vs. CDC) or the ionomer (PVA vs. Nafion®). The Randles–Ševcik relationship was used to estimate the effective electrochemical active surface area (S eff) of the electrodes, depending on the chemical composition of the ionomer studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wilson MS, Valerio JA, Gottesfeld S (1995) Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim Acta 40(3):355–363

    Article  CAS  Google Scholar 

  2. Jung HY, Cho KY, Sung KA, Kim WK, Kurkuri M, Park JK (2007) Sulfonated poly (arylene ether sulfone) as an electrode binder for direct methanol fuel cell. Electrochim Acta 52:4916–4921

    Article  CAS  Google Scholar 

  3. Holdcroft S (2014) Fuel cell catalyst layers: a polymer science perspective. Chem Mater 26:381–393

    Article  CAS  Google Scholar 

  4. Antolini E, Giorgi L, Pozio A, Passalacqua E (1999) Influence of Nafion loading in the catayst layer of gas-diffusion electrodes for PEFC. J Power Sources 77:136–142

    Article  CAS  Google Scholar 

  5. Viswanathan B, Helen M (2007) Is Nafion the only choice? Bulletin of the Catalysis Society of India 6:50–55

    Google Scholar 

  6. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76

    Article  CAS  Google Scholar 

  7. Zhang X-Y, Ding Y-H (2014) Thickness-dependent structural and transport behaviors in the platinum–Nafion interface: a molecular dynamics investigation. RSC Adv 4:44214–44222

    Article  CAS  Google Scholar 

  8. Sasikumar G, Ihm JW, Ryu H (2004) Dependence of optimum Nafion content in catalyst layer on platinum loading. J Power Sources 132:11–17

    Article  CAS  Google Scholar 

  9. Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L (2001) Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 46:799–805

    Article  CAS  Google Scholar 

  10. Antoine O, Bultel Y, Durand R (2001) Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J Electroanal Chem 499:85–94

    Article  CAS  Google Scholar 

  11. Park Y-C, Kakinuma K, Uchida H, Watanabe M, Uchida M (2015) Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. J Power Sources 275:384–391

    Article  CAS  Google Scholar 

  12. Park Y-C, Tokiwa H, Kakinuma K, Watanabe M, Uchida M (2016) Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J Power Sources 315:179–191

    Article  CAS  Google Scholar 

  13. Siroma Z, Fujiwara N, Ioroi T, Yamazaki S, Yasuda K, Miyazaki Y (2004) Dissolution of Nafion membrane and recast Nafion film in mixtures of methanol and water. J Power Sources 126:41–45

    Article  CAS  Google Scholar 

  14. Jung HY, Cho KY, Lee YM, Park JK, Choi JH, Sung YE (2007) Influence of annealing of membrane electrode assembly (MEA) on performance of direct methanol fuel cell (DMFC). J Power Sources 163:952–956

    Article  CAS  Google Scholar 

  15. Zook LA, Leddy J (1996) Density and solubility of nafion: recast, annealed, and commercial films. Anal Chem 68:3793–3796

    Article  CAS  Google Scholar 

  16. Marten ML (2004) Encyclopedia of polymer science and technology, in: Kroschwitz JI (ed). 3rd edn. Wiley, New York Volume 8:399–436

    Google Scholar 

  17. Ye Y-S, Rick J, Hwang B-J (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4(2):913–963. doi:10.3390/polym4020913

    Article  CAS  Google Scholar 

  18. Silva R, Muniz EC, Rubira AF (2008) Multiple hydrophilic polymer ultra-thin layers covalently anchored to polyethylene films. Polymer 49:4066–4075

    Article  CAS  Google Scholar 

  19. Zugic DL, Perovic IM, Nikolic VM, SLJ M, Marceta Kaninski MP (2013) Enhanced performance of the solid alkaline fuel cell using PVA-KOH membrane. Int J Electrochem Sci 8:949–957

    CAS  Google Scholar 

  20. Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation? Nano Res 7(1):71–78

    Article  CAS  Google Scholar 

  21. Ward KR, Gara M, Lawrence NS, Seth Hartshorne R, Compton RG (2013) Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: the effective electrochemical rate constant for non-flat and non-uniform electrode surfaces. J Electroanal Chem 695:1–9

    Article  CAS  Google Scholar 

  22. Ward KR, Compton RG (2014) Quantifying the apparent ‘Catalyticʼ effect of porous electrode surfaces. J Electroanal Chem 724:43–47

    Article  CAS  Google Scholar 

  23. Menshykau D, Streeter I, Compton RG (2008) Influence of electrode roughness on cyclic voltammetry. J Phys Chem C 112:14428–14438

    Article  CAS  Google Scholar 

  24. Jänes A, Thomberg T, Kurig H, Lust E (2009) Nanoscale fine-tuning of porosity of carbide derived carbon prepared from molybdenum carbide. Carbon 47:23–29

    Article  Google Scholar 

  25. Chai GS, Yoon SB, Yu J-S, Choi J-H, Sung Y-E (2004) Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 108:7074–7079

    Article  CAS  Google Scholar 

  26. Álvarez G, Alcaide F, Miguel O, Calvillo L, Lázaro MJ, Quintana JJ, Calderón JC, Pastor E, Esparbé I (2010) Technical electrodes catalyzed with PtRu on mesoporous ordered carbons for liquid direct methanol fuel cells. J Solid State Electrochem 14:1027–1034

    Article  Google Scholar 

  27. Jäger R, Härk E, Steinberg V, Lust E (2016) Influence of temperature on the oxygen electroreduction activity at micro-mesoporous carbon support. J Electrochem Soc 163(3):F284–F290

    Article  Google Scholar 

  28. Jäger R, Härk E, Kasatkin PE, Lust E (2014) Investigation of a carbon-supported Pt electrode for oxygen reduction reaction in 0.1 M KOH aqueous solution. J Electrochem Soc 161(9):F861–F867

    Article  Google Scholar 

  29. Härk E, Jäger R, Lust E (2015) Effect of platinum nanoparticle loading on oxygen reduction at Pt Nanocluster activated microporous-mesoporous carbon support. Electrocatal 6:242–254

    Article  Google Scholar 

  30. Härk E, Jäger R, Kasatkin PE, Steinberg V, Romann T, Möller P, Kanarbik R, Aruväli J, Kirsimäe K, Lust E (2015) Oxygen electrocatalysis on high-surface area non-Pt metal modified carbon catalysts. ECS Trans 64(36):11–21

    Article  Google Scholar 

  31. Zhang J, Tang S, Liao L, Yu W, Li J, Seland F, Haarberg GM (2014) Improved catalytic activity of mixed platinum catalysts supported on various carbon nanomaterials. J Power Sources 267:706–713

    Article  CAS  Google Scholar 

  32. Seah MP, Gilmore IS, Spencer SJ (2001) Quantitative XPS: I. Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database. J Electron Spectrosc Relat Phenom 120:93–111

    Article  CAS  Google Scholar 

  33. Fairley N, CasaXPSversion 2.3.12 www.casaxps.com

  34. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  35. Diaz J, Paolicelli G, Ferrer S, Comin F (1996) Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys Rev B Condens Matter 54:8064–8069

    Article  CAS  Google Scholar 

  36. Payne BP, Biesinger MC, McIntyre NS (2011) X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces. J Electron Spectrosc Relat Phenom 184:29–37

    Article  CAS  Google Scholar 

  37. Beverly S, Seal S, Hong S (2000) Identification of surface chemical functional groups correlated to failure of reverse osmosis polymeric membranes. J Vac Sci Technol 18:1107–1113

    Article  CAS  Google Scholar 

  38. Chen C, Levitin G, Hess DW, Fuller TF (2007) XPS investigation of Nafion® membrane degradation. J Power Sources 169(2):288–295

    Article  CAS  Google Scholar 

  39. Joo JB, Kim YJ, Kim W, Kim P, Yiet J (2008) Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation. Catal Commun 10(3):267–271

    Article  CAS  Google Scholar 

  40. DeLuca NW, Elabd YA (2006) Nafion®/poly (vinyl alcohol) blends: effect of composition and annealing temperature on transport properties. J Membrane Science 282:217–224

    Article  CAS  Google Scholar 

  41. Jiang L, Hsu A, Chu D, Chen R (2009) Oxygen reduction on carbon supported Pt and PtRu catalysts in alkaline solutions. J Electroanal Chem 629:87–93

    Article  CAS  Google Scholar 

  42. Macià MD, Campiña JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564:141–150

    Article  Google Scholar 

  43. Kuzume A, Herrero E, Feliu JM (2007) Oxygen reduction on stepped platinum surfaces in acidic media. J Electroanal Chem 599:333–343

    Article  CAS  Google Scholar 

  44. Grozovski V, Kasuk H, Nerut J, Härk E, Jäger R, Tallo I, Lust E (2015) Oxygen reduction at shape-controlled platinum nanoparticles and composite catalysts based on (100)Pt nanocubes on microporous–mesoporous carbon supports. ChemElectroChem 2:847–851

    Article  CAS  Google Scholar 

  45. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NN, Ross PN (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47:3787–3798

    Article  CAS  Google Scholar 

  46. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/nafion® Interface—a microelectrode investigation. J Electrochem Soc 139(9):2530–2537

    Article  CAS  Google Scholar 

  47. Marek P, Velasco-Veléz JJ, Doll T, Sadowski G (2014) Compensation for the influence of temperature and humidity on oxygen diffusion in a reactive polymer matrix. J Sens Sen Syst 3:291–303

    Article  Google Scholar 

  48. Daikhin LI, Kornyshev AA, Urbakh M (1998) Nonlinear Poisson-Boltzmann theory of a double layer at rough metal/electrolyte interface: a new look on the capacitance data on solid electrodes. J Chem Phys 108:1715–1723

    Article  CAS  Google Scholar 

  49. Daikhin LI, Kornyshev AA, Urbakh M (1996) Double-layer capacitance on a rough metal surface. Phys Rev E 53:6192–6199

    Article  CAS  Google Scholar 

  50. Lust E, Jänes A, Sammelselg V, Miidla P, Lust K (1998) Surface roughness of bismuth, antimony and cadmium electrodes. Electrochim Acta 44:373–383

    Article  CAS  Google Scholar 

  51. Lust E, Jänes A, Sammelselg V, Miidla P (2000) Influence of charge density on the electrochemical surface roughness of cadmium electrode. Electrochim Acta 46:185–191

    Article  CAS  Google Scholar 

  52. Lust E, Kallip S, Möller P, Jänes A, Sammelselg V, Miidla P, Väärtnõu M, Lust K (2003) Influence of surface charge density on the electrochemical surface “roughness” of Bi electrodes. J Electrochem Soc 150:E175–E184

    Article  CAS  Google Scholar 

  53. Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal-insluator transition. Science 277(5334):1978–1981

    Article  CAS  Google Scholar 

  54. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports 5(13801):1–21

    Google Scholar 

  55. Zhang J (Ed) (2008) PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications, Springer-Verlag, London Limited pp 89–134

  56. Gómez-Marín AM, Rizo R, Feliu JM (2013) Some reflections on the understanding of the oxygen reduction reaction at Pt(111). Beilstein J Nanotechnol 4:956–967

    Article  Google Scholar 

  57. Perez J, Gonzalez ER, Ticianelli EA (1998) Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochim Acta 44(8–9):1329–1339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Spallation Source Project: Estonian Partition in ESS Instrument design, development; building and application for scientific research: SLOKT12026T, the Estonian institutional research grant No. IUT20-13, the Estonian Centre of Excellence in Science: TK117T “High-technology Materials for Sustainable Development”, the European Regional Development Fund: TK141 “Advanced materials and high-technology devices for energy recuperation systems”, the Estonian Energy Technology Program: SLOKT10209T, the Materials Technology Project: SLOKT12180T, NAMUR “Nanomaterials—research and applications” (3.2.0304.12-0397), and by personal research grant No. PUT55. The authors would like to thank Dr. Karmen Lust for providing critical comments and English corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lust.

Additional information

E. Härk, R. Jäger, P. Möller, T. Romann and E. Lust are members of ISE.

E. Härk and E. Lust are members of ECS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härk, E., Jäger, R., Tallo, I. et al. Influence of chemical composition and amount of intermixed ionomer in the catalyst on the oxygen reduction reaction characteristics. J Solid State Electrochem 21, 2079–2090 (2017). https://doi.org/10.1007/s10008-017-3521-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3521-7

Keywords

Navigation