Skip to main content
Log in

Polyaniline- and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The formation and characterisation of films of polyaniline (PANI) and poly(ethylenedioxythiophene) (PEDOT) containing cellulose nanocrystals (CNXLs) from cotton are described. PANI/CNXL films were electrodeposited from a solution containing CNXLs, HCl and aniline, while PEDOT/CNXL films were electrodeposited from a solution containing CNXLs, LiClO4 and ethylenedioxythiophene. In each case, incorporation of CNXLs into the electrodepositing polymer film led to the formation of a porous polymer/CNXL nanocomposite structure. The films were characterised using scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge analysis. The specific capacitances of the nanocomposite materials were higher than those of the CNXL-free counterparts (488 F g−1 for PANI/CNXL; 358 F g−1 for PANI; 69 F g−1 for PEDOT/CNXL; 58 F g−1 for PEDOT). The durability of the PANI/CNXL film under potential cycling was slightly better than that of the CNXL-free PANI, while the PEDOT film was slightly more durable than the PEDOT/CNXL film. Using electrodeposition, it was possible to form thick PANI/CNXL films, with total electrode capacitances of 2.07 F cm−2 and corresponding specific capacitances of 440 F g−1, demonstrating that this particular nanocomposite may be promising for the construction of high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  3. Fletcher S, Black VJ, Kirkpatrick I (2014) J Solid State Electrochem 18:1377–1387

    Article  CAS  Google Scholar 

  4. Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  5. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994

    Article  CAS  Google Scholar 

  6. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  7. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  8. Augustyn V, Simon P, Dunn B (2014) Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  9. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  10. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) J Power Sources 153:413–418

    Article  CAS  Google Scholar 

  11. Wu MQ, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) J Mater Chem 15:2297–2303

    Article  CAS  Google Scholar 

  12. Peng C, Snook GA, Fray DJ, Shaffer MSP, Chen GZ (2006) Chem Commun 4629–4631

  13. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH (2000) Adv Mater 12:522–526

    Article  CAS  Google Scholar 

  14. Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R, Karkhaneh A, Majedi FS, Mokarram N, Renaud P, Jacob KI (2014) J Mater Chem A 2:11334–11340

    Article  CAS  Google Scholar 

  15. Chen H, Armand M, Demailly G, Dolhem F, Poizot P, Tarascon J-M (2008) Chem Sus Chem 1:348–355

    Article  CAS  Google Scholar 

  16. Chen H, Armand M, Courty M, Jiang M, Grey CP, Dolhem F, Tarascon J-M, Poizot P (2009) J Am Chem Soc 131:8984–8988

    Article  CAS  Google Scholar 

  17. Ren Z, Ward TE, Regan JM (2007) Environ Sci Technol 41:4781–4786

    Article  CAS  Google Scholar 

  18. Sugano Y, Vestergaard M, Yoshikawa H, Saito M, Tamiya E (2010) Electroanalysis 22:1688–1694

    Article  CAS  Google Scholar 

  19. Li J, Lewis RB, Dahn JR (2007) Electrochem Solid-State Lett 10:A17–A20

    Article  CAS  Google Scholar 

  20. Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E (2007) J Power Sources 166:104–111

    Article  CAS  Google Scholar 

  21. Bockenfeld N, Jeong SS, Winter M, Passerini S, Balducci A (2013) J Power Sources 221:14–20

    Article  Google Scholar 

  22. Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D (2012) J Mater Chem 22:3227–3233

    Article  CAS  Google Scholar 

  23. Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Adv Mater 23:3751–3769

    CAS  Google Scholar 

  24. Nystrom G, Razaq A, Stromme M, Nyholm L, Mihranyan A (2009) Nano Lett 9:3635–3639

    Article  Google Scholar 

  25. Weng Z, Su Y, Wang DW, Li F, Du JH, Cheng HM (2011) Adv Energy Mater 1:917–922

    Article  CAS  Google Scholar 

  26. Zheng GY, Hu LB, Wu H, Xie X, Cui Y (2011) Energy Environ Sci 4:3368–3373

    Article  CAS  Google Scholar 

  27. Kang YJ, Chun SJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY, Kim W (2012) ACS Nano 6:6400–6406

    Article  CAS  Google Scholar 

  28. Yuan LY, Yao B, Hu B, Huo KF, Chen W, Zhou J (2013) Energy Environ Sci 6:470–476

    Article  CAS  Google Scholar 

  29. Razaq A, Nyholm L, Sjodin M, Stromme M, Mihranyan A (2012) Adv Energy Mater 2:445–454

    Article  CAS  Google Scholar 

  30. Kang YR, Li YL, Hou F, Wen YY, Su D (2012) Nanoscale 4:3248–3253

    Article  CAS  Google Scholar 

  31. Zhang XD, Lin ZY, Chen B, Sharma S, Wong CP, Zhang W, Deng YL (2013) J Mater Chem A 1:5835–5839

    Article  CAS  Google Scholar 

  32. Liu LL, Niu ZQ, Zhang L, Zhou WY, Chen XD, Xie SS (2014) Adv Mater 26:4855–4862

    Article  CAS  Google Scholar 

  33. Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y, Hu B, Huang Y, Zhou J, Wang ZL (2012) Angew Chem Int Ed 51:4934–4938

    Article  CAS  Google Scholar 

  34. Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) J Phys Chem C 116:13013–13019

    Article  CAS  Google Scholar 

  35. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Proc Natl Acad Sci U S A 104:13574–13577

    Article  CAS  Google Scholar 

  36. Gui Z, Zhu HL, Gillette E, Han XG, Rubloff GW, Hu LB, Lee SB (2013) ACS Nano 7:6037–6046

    Article  CAS  Google Scholar 

  37. Niu Q, Gao K, Shao Z (2014) Nanoscale 6:4083–4088

    Article  CAS  Google Scholar 

  38. Zhu L, Wu L, Sun Y, Li M, Xu J, Bai Z, Liang G, Liu L, Fang D, Xu W (2014) RSC Adv 4:6261–6266

    Article  CAS  Google Scholar 

  39. Bao LH, Li XD (2012) Adv Mater 24:3246–3252

    Article  CAS  Google Scholar 

  40. Liang GJ, Zhu LG, Xu J, Fang D, Bai ZK, Xu WL (2013) Electrochim Acta 103:9–14

    Article  CAS  Google Scholar 

  41. Dufresne A (2013) Mater Today 16:220–227

    Article  CAS  Google Scholar 

  42. Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  43. Liew SY, Walsh DA, Thielemans W (2013) RSC Adv 3:9158–9162

    Article  CAS  Google Scholar 

  44. Liew SY, Thielemans W, Walsh DA (2010) J Phys Chem C 114:17926–17933

    Article  CAS  Google Scholar 

  45. Wu X, Chabot VL, Kim BK, Yu A, Berry RM, Tam KC (2014) Electrochim Acta 138:139–147

    Article  CAS  Google Scholar 

  46. Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525–537

    Article  CAS  Google Scholar 

  47. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Chem Mater 14:1610–1613

    Article  CAS  Google Scholar 

  48. Snook GA, Peng C, Fray DJ, Chen GZ (2007) Electrochem Commun 9:83–88

    Article  CAS  Google Scholar 

  49. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  50. Araki J, Wada M, Kuga S, Okana T (1999) J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  51. Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  52. Habibi Y, Chanzy H, Vignon MR (2006) Cellulose 13:679–687

    Article  CAS  Google Scholar 

  53. Deng ZP, Stone DC, Thompson M (1997) Analyst 122:1129–1138

    Article  CAS  Google Scholar 

  54. Alves CR, Herrasti P, Ocon P, Avaca LA, Otero TF (2001) Polymer J 33:255–262

    Article  CAS  Google Scholar 

  55. Zhao ZS, Pickup PG (1996) J Electroanal Chem 404:55–60

    Article  Google Scholar 

  56. Gupta V, Miura N (2006) Mater Lett 60:1466–1469

    Article  CAS  Google Scholar 

  57. Frackowiak E, Beguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  58. Yan H, Tomizawa K, Ohno H, Toshima N (2003) Macromol Mater Eng 288:578–584

    Article  CAS  Google Scholar 

  59. Fletcher S (2001) Electrochem Commun 3:692–696

    Article  CAS  Google Scholar 

  60. Macdonald DD (2006) Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding this work through the DICE (Driving Innovation in Chemistry and Chemical Engineering) Project under the Science and Innovation Award (Grant Number EP/D501229/1). SYL thanks the University of Nottingham for a Dean of Engineering International Research Scholarship and Professor Stephen Fletcher for helpful discussions on impedance artefacts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wim Thielemans or Darren A. Walsh.

Additional information

This paper is dedicated to Prof. Stephen Fletcher on the occasion of his 65th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liew, S.Y., Thielemans, W. & Walsh, D.A. Polyaniline- and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. J Solid State Electrochem 18, 3307–3315 (2014). https://doi.org/10.1007/s10008-014-2669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2669-7

Keywords

Navigation