Skip to main content
Log in

A systematic approach to the impedance of surface layers with mixed conductivity forming on electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrode impedance can be evaluated on the basis of the electrode reaction kinetics in many systems, even for complicated electrode reactions. However, when a surface layer is present on the electrode surface, the theoretically well-established impedance model of the electrode reaction is often completed with phenomenological equivalent circuit elements in order to achieve the number of time constants as derived from the electrode impedance spectra measured. In these cases, the meaning of the phenomenological equivalent circuit elements are often unclear, though the presence of these elements is helpful to describe the system throughout the frequency domain used for the measurement. In the present work, an attempt will be shown to separate the effect of the electronic and ionic charge transfer in a surface layer and to identify the appropriate equivalent circuits. Examples are shown from the fields of lithium-ion batteries where a solid electrolyte interface as a surface layer is present at the negative electrode and the contribution of various charge carriers may be of importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerner Z, Pajkossy T (2002) Measurement of adsorption rates of anions on Au(111) electrodes by impedance spectroscopy. Electrochim Acta 47:2055–2063

    Article  CAS  Google Scholar 

  2. Pajkossy T, Kolb DM (2008) Anion-adsorption-related frequency-dependent double layer capacitance of the platinum-group metals in the double layer region. Electrochim Acta 53:7403–7409

    Article  CAS  Google Scholar 

  3. Yi J, Li XP, Hu SJ, Li WS, Zhou L, Xua MQ, Lei JF, Hao LS (2011) Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J Power Sources 196:6670–6675

    Article  CAS  Google Scholar 

  4. Qiao YQ, Tu JP, Xiang JY, Wang XL, Mai YJ, Zhang D, Liu WL (2011) Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials. Electrochim Acta 56:4139–4145

    Article  CAS  Google Scholar 

  5. Wang C, Wang D, Wang Q, Chen H (2010) Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. J Power Sources 195:7432–7437

    Article  CAS  Google Scholar 

  6. Zhao X, Tang X, Zhang L, Zhao M, Zhai J (2010) Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4. Electrochim Acta 55:5899–5904

    Article  CAS  Google Scholar 

  7. Lewandowski A, Biegun M, Galinski M, Swiderska-Mocek A (2013) Kinetic analysis of Li|Li+ interphase in an ionic liquid electrolyte. J Appl Electrochem 43:367–374

    Article  CAS  Google Scholar 

  8. Lin Y, Lin Y, Zhou T, Zhao G, Huang Y, Huang Z (2013) Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles. J Power Sources 226:20–26

    Article  CAS  Google Scholar 

  9. Ma Z, Shao G, Wang G, Du J, Zhang Y (2013) Electrochemical performance of Mo-doped LiFePO4/C composites prepared by two-step solid-state reaction. Ionics 19:437–443

    Article  CAS  Google Scholar 

  10. Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346

    Article  CAS  Google Scholar 

  11. Badawy WA, El-Rabiee M, Helal NH, Nady H (2012) The role of Ni in the surface stability of Cu–Al–Ni ternary alloys in sulfate–chloride solutions. Electrochim Acta 71:50–57

    Article  CAS  Google Scholar 

  12. Merl DK, Panjan P, Kovac J (2013) Corrosion and surface study of sputtered Al–W coatings with a range of tungsten contents. Corros Sci 69:359–368

    Article  Google Scholar 

  13. Rosalbino F, Maccio D, Scavino G, Saccone A (2012) In vitro corrosion behaviour of Ti–Nb–Sn shape memory alloys in Ringer’s physiological solution. J Mater Sci: Mater Med 23:865–871

    Article  CAS  Google Scholar 

  14. Pilbáth Z, Sziráki L (2008) The electrochemical reduction of oxygen on zinc corrosion films in alkaline solutions. Electrochim Acta 53:3218–3230

    Article  Google Scholar 

  15. Xu J, Wu X, Han EH (2012) The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment. ElectrochimActa 71:219–226

    Article  CAS  Google Scholar 

  16. An Y, Zuo P, Cheng X, Liao L, Yin G (2011) The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochim Acta 56:4841–4848

    Article  CAS  Google Scholar 

  17. Kobayashi T, Seki S, Mita Y, Miyashiro H, Terada N, Kojima T (2010) AC impedance analysis for 10 Ah-class lithium-ion batteries. Electrochemistry 78:416–419

    Article  CAS  Google Scholar 

  18. Funabiki A, lnaba M, Ogumi Z, Yuasa S, Otsuli J, Tasaka A (1998) Impedance study on the electrochemical lithium intercalation into natural graphite powder. J Electrochem Soc 145:172–178

    Article  CAS  Google Scholar 

  19. Funabiki A, Inaba M, Abe T, Ogumi Z (1999) Stage transformation of lithium-graphite intercalation compounds caused by electrochemical lithium intercalation. J Electrochem Soc 146:2443–2448

    Article  CAS  Google Scholar 

  20. Wang Y, Wu M, Zhang WF (2008) Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochim Acta 53:7863–7868

    Article  CAS  Google Scholar 

  21. Guo P, Song H, Chen X, Ma L, Wang G, Wang F (2011) Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries. Anal Chim Acta 688:146–155

    Article  CAS  Google Scholar 

  22. Zhou S, Wang D (2010) Unique lithiation and delithiation processes of nanostructured metal silicides. ACS Nano 4:7014–7020

    Article  CAS  Google Scholar 

  23. Dai C, Chen Z, Jin H, Hu X (2010) Synthesis and performance of Li3(V1−xMgx)2(PO4)3 cathode materials. J Power Sources 195:5775–5779

    Article  CAS  Google Scholar 

  24. Dedryvere R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D (2010) Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery. J Phys Chem C 114:10999–11008

    Article  CAS  Google Scholar 

  25. Hao X, Liu P, Zhang Z, Lai Y, Wang X, Li J, Liu Y (2010) Tetraethylammonium tetrafluoroborate as additive to improve the performance of LiFePO4/artificial graphite cells. Electrochem Solid-State Lett 13:A118–A120

    Article  CAS  Google Scholar 

  26. Pramanik A, Ghanty C, Majumder SB (2010) Synthesis and electrochemical characterization of xLi(Ni0.8Co0.15Mg0.05)O2 – (1-x)Li[Li1/3Mn2/3]O2 (0.0 < x < 1.0) cathodes for Li rechargeable batteries. Solid State Sci 12:1797–1802

    Article  CAS  Google Scholar 

  27. Rui XH, Yesibolati N, Li SR, Yuan CC, Chen CH (2011) Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid St Ionics 187:58–63

    Article  CAS  Google Scholar 

  28. Wu XM, Chen S, Ma MY, Liu JB (2011) Synthesis of Co-coated lithium manganese oxide and its characterization as cathode for lithium ion battery. Ionics 17:35–39

    Article  Google Scholar 

  29. Yang T, Zhang N, Lang Y, Sun K (2011) Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochim Acta 56:4058–4064

    Article  CAS  Google Scholar 

  30. Zhang N, Yang T, Lang Y, Sun K (2011) A facile method to prepare hybrid LiNi0.5Mn1.5O4/C with enhanced rate performance. J Alloys Compnd 509:3783–3786

    Article  CAS  Google Scholar 

  31. Lee SH, Jee SH, Lee KS, Nam SC, Yoon YS (2013) Enhanced cycling performance in heat-treated tin-based composite oxide anode for lithium-ion batteries. Electrochim Acta 87:905–911

    Article  CAS  Google Scholar 

  32. Lin Y, Lin Y, Zhou T, Zhao G, Huang Y, Yang Y, Huang Z (2013) Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries. Mater Chem Phys 138:313–318

    Article  CAS  Google Scholar 

  33. Nacimiento FJ, Lavela P, Tirado JL, Jiménez JM, Barreda D, Santamaría R (2013) 119Sn Mössbauer spectroscopy analysis of Sn-Co-C composites prepared from a fuel oil pyrolysis precursor as anodes for Li-ion batteries. Mater Chem Phys 138:747–754

    Article  CAS  Google Scholar 

  34. Tao HC, Huang M, Fan LZ, Qua X (2013) Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries. Electrochim Acta 89:394–399

    Article  CAS  Google Scholar 

  35. Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A (2011) Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochim Acta 56:5972–5978

    Article  CAS  Google Scholar 

  36. Lewandowski A, Swiderska-Mocek A, Waliszewski L (2013) Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries. Electrochim Acta 92:404–411

    Article  CAS  Google Scholar 

  37. Hu Q, Osswald S, Daniel R, ZhuY WS, Ortiz L, Sadoway DR (2011) Graft copolymer-based lithium-ion battery for high-temperature operation. J Power Sources 196:5604–5610

    Article  CAS  Google Scholar 

  38. Moss PL, Au G, Plichta EJ, Zheng JP (2008) An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc 155:A986–A994

    Article  CAS  Google Scholar 

  39. Moss PL, Au G, Plichta EJ, Zheng JP (2010) Study of capacity fade of lithium-ion polymer rechargeable batteries with continuous cycling. J Electrochem Soc 157:A1–A7

    Article  CAS  Google Scholar 

  40. Moss PL, Au G, Plichta EJ, Zheng JP (2009) Investigation of solid electrolyte interfacial layer development during continuous cycling using ac impedance spectra and micro-structural analysis. Journal of Power Sources 189:66–71

    Article  CAS  Google Scholar 

  41. Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 56:3981–3987

    Article  CAS  Google Scholar 

  42. Levi MD, Aurbach D (1997) Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem B 101:4630–4640

    Article  CAS  Google Scholar 

  43. Hwang BJ, Chen CY, Cheng MY, Santhanam R, Ragavendran K (2010) Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J Power Sources 195:4255–4265

    Article  CAS  Google Scholar 

  44. Schweikert N, Hofmann A, Schulz M, Scheuermann M, Boles ST, Hanemann T, Hahn H, Indris S (2013) Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy. J Power Sources 228:237–243

    Article  CAS  Google Scholar 

  45. Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) Investigation of graphitic carbon foams/LiNiPO4 composites. J Solid State Electrochem 16:3791–379

    Article  CAS  Google Scholar 

  46. Li L, Li LY, Guo XD, Zhong BH, Chen YX, Tang Y (2013) Synthesis and electrochemical performance of sulfur–carbon composite cathode for lithium–sulfur batteries. J Solid State Electrochem 17:115–119

    Article  CAS  Google Scholar 

  47. Zhang Y, Wang CY, Tang X (2011) Cycling degradation of an automotive LiFePO4 lithium-ion battery. J Power Sources 196:1513–1520

    Article  CAS  Google Scholar 

  48. Tröltzsch U, Kanoun O, Tränkler HR (2006) Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim Acta 51:1664–1672

    Article  Google Scholar 

  49. Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T (2010) Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources 195:2877–2882

    Article  CAS  Google Scholar 

  50. Hassoun J, Fernicola A, Navarra MA, Panero S, Scrosati B (2010) An advanced lithium-ion battery based on a nanostructured Sn-C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. J Power Sources 195:574–579

    Article  CAS  Google Scholar 

  51. Kim JH, Song SW, Hoang HV, Doh CH, Kim DW (2011) Study on the cycling performance of Li4Ti5O12 electrode in the ionic liquid electrolytes containing an additive. Bull Korean Chem Soc 32:105–108

    Article  CAS  Google Scholar 

  52. Lewandowski A, Swiderska-Mocek A, Acznik I (2010) Properties of LiMn2O4 cathode in electrolyte based on N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 55:1990–1994

    Article  CAS  Google Scholar 

  53. Kim H, Lee JT, Yushin G (2013) High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector. J Power Sources 226:256–265

    Article  CAS  Google Scholar 

  54. Song H, Cao Z, Chen X, Lu H, Jia M, Zhang Z, Lai Y, Li J, Liu Y (2013) Capacity fade of LiFePO4/graphite cell at elevated temperature. J Solid State Electrochem 17:599–605

    Article  CAS  Google Scholar 

  55. Liao YH, Li XP, Fu CH, Xu R, Rao MM, Zhou L, Hu SJ, Li WS (2011) Performance improvement of polyethylene-supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano-Al2O3. J Power Sources 196:6723–6728

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges Dr. Allen J. Bard for the postdoctoral research period spent in his lab in 1995–1997. This work was supported by the Hungarian Scientific Research Fund (OTKA) through grant # K 104 696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Péter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Péter, L. A systematic approach to the impedance of surface layers with mixed conductivity forming on electrodes. J Solid State Electrochem 17, 3075–3081 (2013). https://doi.org/10.1007/s10008-013-2158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2158-4

Keywords

Navigation