Skip to main content
Log in

α-MoO3 nanowire-based amperometric biosensor for l-lactate detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Large-scale orthorhombic single-crystalline molybdenum trioxide nanowires were synthesized using a facile one-pot hydrothermal method. Lactate oxidase enzyme was immobilized on the nanowires to produce a highly sensitive electrochemical biosensor for l-lactate detection. At an applied potential of 0.5 V, the sensor exhibited a high sensitivity of 0.87 μA/mM with a fast response to l-lactate (90% of response times within 10 s). A linear response was obtained over a concentration range from 0.5 to 8 mM with a detection limit of 0.15 mM (S/N = 3). The developed biosensor showed excellent reproducibility and operational stability, as well as the ability to be stored long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Palmisano F, Benedettob GE, Zamboninb CG (1997) Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Anal 122:365–369

    Article  CAS  Google Scholar 

  2. Ciobanu M, Taylor DE, Wilburn JP, Cliffel DE (2008) Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal Chem 80:2717–2727

    Article  CAS  Google Scholar 

  3. Bassi AS, Tang DQ, Lee E, Zhu JX, Bergougnou MA (1996) Biosensors in environmental and bioprocess monitoring and control. Food Tech Biotechnol 34:9–22

    CAS  Google Scholar 

  4. Carr PW, Bowers LD (1976) Applications of immobilized enzymes in analytical chemistry. Anal Chem 48:544A–549A

    Article  Google Scholar 

  5. Hall EAH (1991) Biosensors. Prentice Hall, London

    Google Scholar 

  6. Cui X, Li MC, Zanga J, Yu S (2007) Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens Bioelectro 22:3288–3292

    Article  CAS  Google Scholar 

  7. Cowan BN, Burns HJG, Boyle P, Ledingham IM (1984) The relative prognostic value of lactate and haemodynamic measurements in early shock. Anaesthesia 39:750–755

    Article  CAS  Google Scholar 

  8. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectro 26:2811–2821

    Article  CAS  Google Scholar 

  9. Parra-Alfambra AM, Casero E, Petit-Domínguez MD, Barbadillo M, Pariente F, Vázquez L, Lorenzo E (2011) New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Anal 136:340–347

    Article  CAS  Google Scholar 

  10. Shkotova LV, Goriushkina TB, Tran-Minh C, Chovelon JM, Soldatkin AP, Dzyadevych SV (2008) Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater Sci Eng C 28:943–948

    Article  CAS  Google Scholar 

  11. Leonida MD, Starczynowski DT, Waldman R, Blajeni BA (2003) Polymeric FAD used as enzyme-friendly mediator in lactate detection. Anal Bioanal Chem 376:832–837

    Article  CAS  Google Scholar 

  12. Cannon JJ, Chen LF, Flickinger MC, Tsao GT (1984) The development of an immobilized lactate oxidase system for lactic acid analysis. Biotechnol Bioeng 26:167–173

    Article  CAS  Google Scholar 

  13. Rawson FJ, Purcell WM, Xu J, Pemberton RM, Fielden PR, Biddle N, Hart JP (2009) A microband lactate biosensor fabricated using a water-based screen-printed carbon ink. Talanta 77:1149–1154

    Article  CAS  Google Scholar 

  14. Parra A, Casero E, Lorenzo E, Pariente F, Vazquez L (2007) Nanomechanical properties of globular proteins: lactate oxidase. Langmuir 23:2747–2754

    Article  CAS  Google Scholar 

  15. Lee TY, Shim YB (2001) Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer. Anal Chem 73:5629–5632

    Article  CAS  Google Scholar 

  16. Lupu A, Valsesia A, Bretagnol F, Colpo P, Rossi F (2007) Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sens Actuators B 127:606–612

    Article  Google Scholar 

  17. Curulli A, Cusmà A, Kaciulis S, Padeletti G, Pandolfi L, Valentini F, Viticoli M (2006) Immobilization of GOD and HRP enzymes on nanostructured substrates. Surf Interface Anal 38:478–481

    Article  CAS  Google Scholar 

  18. Mai L, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang ZL (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19:3712–3716

    Article  CAS  Google Scholar 

  19. Hu B, Mai L, Chen W, Yang F (2009) From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. ACS Nano 3:478–482

    Article  CAS  Google Scholar 

  20. Gerard M, Ramanathan K, Chaubey A, Malhotra BD (1999) Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films. Electroanalysis 11:450–452

    Article  CAS  Google Scholar 

  21. Urban G, Jobst G, Aschauer E, Tilado O, Svasek P, Varahram M (1994) Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers. Sens Actuators B 19:592–596

    Article  CAS  Google Scholar 

  22. Ghisla S, Massey V, Choongs YS (1979) Covalent adducts of lactate oxidase. Photochemical formation and structure identification. J Biol Chem 254:10662–10669

    CAS  Google Scholar 

  23. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectro 25:901–905

    Article  CAS  Google Scholar 

  24. Murray RW (1984) Polymer modification of electrodes. Ann Rev Mater Sci 14:145–169

    Article  CAS  Google Scholar 

  25. Xiao Y, Patolsky F, Katz HJF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  CAS  Google Scholar 

  26. Kong T, Chen Y, Ye Y, Zhang K, Wang Z, Wang X (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuators B: Chem 138:344–350

    Article  Google Scholar 

  27. Fang B, Zhang C, Wang G, Wang M, Ji Y (2011) A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sens Actuators B: Chem 155:304–310

    Article  Google Scholar 

  28. Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106-1

    Google Scholar 

  29. Yang M, Wang J, Li H, Zheng JG, Wu NN (2008) A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 19:075502–075506

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Ministry of Education, Science and Technology under grants NRF-2011-0031392 (Priority Research Centers Program), R31-2008-000-10029-0 (World Class University Program), and S-2011-0292-000 (Basic Science Research Program) and by the Global Frontier Research Center for Advanced Soft Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Joon Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakir, I., Shahid, M., Yang, H.W. et al. α-MoO3 nanowire-based amperometric biosensor for l-lactate detection. J Solid State Electrochem 16, 2197–2201 (2012). https://doi.org/10.1007/s10008-012-1648-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1648-0

Keywords

Navigation