Skip to main content
Log in

Separator technologies for lithium-ion batteries

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Although separators do not participate in the electrochemical reactions in a lithium-ion (Li-ion) battery, they perform the critical functions of physically separating the positive and negative electrodes while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Separators for liquid electrolyte Li-ion batteries can be classified into porous polymeric membranes, nonwoven mats, and composite separators. Porous membranes are most commonly used due to their relatively low processing cost and good mechanical properties. Although not widely used in Li-ion batteries, nonwoven mats have the potential for low cost and thermally stable separators. Recent composite separators have attracted much attention, however, as they offer excellent thermal stability and wettability by the nonaqueous electrolyte. The present paper (1) presents an overview of separator characterization techniques, (2) reviews existing technologies for producing different types of separators, and (3) discusses directions for future investigation. Research into separator fabrication techniques and chemical modifications, coupled with the numerical modeling, should lead to further improvements in the performance and abuse tolerance as well as cost reduction of Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ehrlich GE (2002) In: Linden D, Reddy TB (eds) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  2. Johnson BA, White RE (1998) J Power Sources 70:48–54

    Article  CAS  Google Scholar 

  3. Djian D, Alloin F, Martinet S, Lignier H, Sanchez JY (2007) J Power Sources 172:416–421

    Article  CAS  Google Scholar 

  4. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) J Power Sources 81–82:902–905

    Article  Google Scholar 

  5. Orsini F, du Pasquier A, Beaudouin B, Tarascon JM, Trentin M, Langenhuizen N, de Beer E, Notten P (1999) J Power Sources 81–82:918–921

    Article  Google Scholar 

  6. Liu HK, Wang GX, Guo Z, Wang J, Konstantinov K (2006) J Nanosci Nanotechno 6:1–15

    Article  Google Scholar 

  7. Arora P, Zhang Z (2004) Chem Rev 104:4419–4462

    Article  CAS  Google Scholar 

  8. Zhang SS (2007) J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  9. Caldwell DL, Poush KA (1984) US Patent 4464238

  10. Abraham KM (1993) Electrochim Acta 38:1233–1248

    Article  CAS  Google Scholar 

  11. Patel KK, Paulsen JM, Desilvestro J (2003) J Power Sources 122:144–152

    Article  CAS  Google Scholar 

  12. Jeong YB, Kim DW (2004) J Power Sources 128:256–262

    Article  CAS  Google Scholar 

  13. Venugopal G, Moore J, Howard J, Pendalwar S (1999) J Power Sources 77:34–41

    Article  CAS  Google Scholar 

  14. Piatkiewicz W, Rosinski S, Lewinska D, Bukowski J, Judycki W (1999) J Membr Sci 153:1–102

    Article  Google Scholar 

  15. Jena A, Gupta K (2002) Fluid Part Sep J 4:227–241

    Google Scholar 

  16. Tye FL (1983) J Power Sources 9:89–100

    Article  CAS  Google Scholar 

  17. Liu SJ, Maslivah JH (1996) In: Schramm LL (ed) Suspensions: fundamentals and applications in the petroleum industry. American Chemical Society, Washington

    Google Scholar 

  18. Kim LU, Kim CK (2006) J Polym Sci Polym Phys 44:2025–2034

    Article  CAS  Google Scholar 

  19. Ma JC, Megahed ES, Stachoviak TJ, Craanen SA, Schneider DA, Nestler JP (2002) US Patent 6444356

  20. Yoneda H, Nishimura Y, Doi Y, Fukuda M, Kohno M (2010) Polym J 42:425–437

    Article  CAS  Google Scholar 

  21. Weighall MJ (1991) J Power Sources 34:257–268

    Article  CAS  Google Scholar 

  22. Strathmann H, Kock K (1977) Desalination 21:241–255

    Article  CAS  Google Scholar 

  23. Yilmaz L, McHugh AJ (1986) J Membr Sci 28:287–310

    Article  CAS  Google Scholar 

  24. Reuvers AJ, van der Berg JWA, Smolders CA (1987) J Membr Sci 34:45–65

    Article  CAS  Google Scholar 

  25. Reuvers AJ, Smolders CA (1987) J Membr Sci 34:67–86

    Article  CAS  Google Scholar 

  26. Radovanovic P, Thiel SW, Hwang ST (1992) J Membr Sci 65:213–229

    Article  CAS  Google Scholar 

  27. Wienk IM, Boom RM, Beerlage MAM, Bulte AMW, Smolders CA, Strathmann H (1996) J Membr Sci 113:361–371

    Article  CAS  Google Scholar 

  28. Bottino A, Camera-Roda G, Capannelli G, Munari S (1991) J Membr Sci 57:1–20

    Article  CAS  Google Scholar 

  29. Zhang SS, Xu K, Foster DL, Ervin MH, Jow TR (2004) J Power Sources 125:114–118

    Article  CAS  Google Scholar 

  30. Andrieu X, Laurence J (1998) US Patent 5811205

  31. Dupasquier A, Tarascon JM (2003) US Patent 6537334

  32. Dupasquier A, Warren PC, Culver D, Gozdz AS, Amatucci GG, Tarascon JM (2000) Solid State Ionics 135:249–257

    Article  CAS  Google Scholar 

  33. Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008) Electrochem Commun 10:791–794

    Article  CAS  Google Scholar 

  34. Lundquist JT, Lundsager B, Palmer NI, Troffkin HJ, Howard J (1987) US Patent 4650730

  35. Yu WC (1997) US Patent 5691077

  36. Higuchi H, Matsushita K, Ezoe M, Shinomura T (1995) US Patent 5385777

  37. Ihm DW, Noh JG, Kim JY (2002) J Power Sources 109:388–393

    Article  CAS  Google Scholar 

  38. Noumi S, Yamamura Y, Nakayama S (2010) US Patent 7704597

  39. Yamamoto K, Fujita S, Uetani Y, Noumi S, Emori H, Yamamura Y (2003) US Patent 6559195

  40. Johnson MB, Wilkes GL (2002) J Appl Polym Sci 83:2095–2113

    Article  CAS  Google Scholar 

  41. Beard KW (2006) US patent application 20060081530

  42. Takahashi T, Tateno T (1999) US Patent 5856426

  43. Ohya S, Fujii Y, Yao S, Asano Y, Nakayama K, Fukunaga K (2003) US Patent 6565962

  44. Xiao LF, Ai XP, Cao Y, Wang YD, Yang HX (2005) Electrochem Commun 7:589–592

    Article  CAS  Google Scholar 

  45. Chen G, Richardson TS (2004) Electrochem Solid-State 7:A23–A26

    Article  CAS  Google Scholar 

  46. Feng JK, Ai XP, Cao YL, Yang HX (2006) J Power Sources 161:545–549

    Article  CAS  Google Scholar 

  47. Thomas-Alyea KE, Newman J, Chen G, Richardson TJ (2004) J Electrochem Soc 151:A509–A521

    Article  CAS  Google Scholar 

  48. Ko JM, Min BG, Kim DW, Ryu KS, Kim KM, Lee YG, Chang SH (2004) Electrochim Acta 50:367–370

    Article  CAS  Google Scholar 

  49. Gao K, Hu GX, Yi TF, Dai CS (2006) Electrochim Acta 52:443–449

    Article  CAS  Google Scholar 

  50. Gineste JL, Pourcelly G (1995) J Membr Sci 107:155–164

    Article  CAS  Google Scholar 

  51. Yao ZP, Ranby B (1990) J Appl Polym Sci 41:1469–1478

    Article  CAS  Google Scholar 

  52. Urairi M, Tachibana T, Matsumoto K, Shinomura T, Iida H, Kawamura K, Yano S, Ishida O (1996) US Patent 5558682

  53. Sugiyama M, Totsuka H, Mitani S, Takahata M (2007) US Patent 7311994

  54. Kim JY, Kim SK, Lee SJ, Lee SY, Lee HM, Ahn S (2004) Electrochim Acta 50:363–366

    Article  CAS  Google Scholar 

  55. Kritzer P (2006) J Power Sources 161:1335–1340

    Article  CAS  Google Scholar 

  56. Ashida T, Tsukuda T (2001) US Patent 6200706

  57. Wang Y, Zhan H, Hu J, Liang Y, Zeng S (2009) J Power Sources 189:616–619

    Article  CAS  Google Scholar 

  58. Kamei T, Yamazaki M (2004) US Patent 6730439

  59. Suzuki H, Sudo Y (2003) JP-A-2003-142064

  60. Sudou Y, Suzuki H, Nagami S, Ikuta K, Yamamoto T, Okijima S, Suzuki S, Ueshima H (2007) US Patent 7183020

  61. Bansal D, Meyer B, Salomon M (2008) J Power Sources 178:848–851

    Article  CAS  Google Scholar 

  62. Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaki M (2007) Electrochem Solid-State 10:A159–A162

    Article  CAS  Google Scholar 

  63. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) J Electrochem Soc 152:A295–A300

    Article  CAS  Google Scholar 

  64. Lee SW, Choi SW, Jo SM, Chin BD, Kim DY, Lee KY (2006) J Power Sources 163:41–46

    Article  CAS  Google Scholar 

  65. Chu B, Hsaio BS, Fang D (2006) US Patent application 2006049542

  66. Um IC, Fang D, Hsiao BS, Okamoto A, Chu B (2004) Biomacromolecules 5:1428–1436

    Article  CAS  Google Scholar 

  67. Armantrout JE, Bryner MA, Davis MC, Kim YM (2006) US Patent application 2006012084

  68. Kim YM, Sung YB, Jang RS, Ahn KR (2009) US Patent 7618579

  69. Peng M, Sun Q, Ma Q, Li P (2008) Microporous Mesoporous Mater 115:562–567

    Article  CAS  Google Scholar 

  70. Hiroki S, Satoshi N, Hiroyuki H, Takahiro D (2006) Patent application WO 06123811

  71. Lee YM, Kim JW, Choi NS, Lee JA, Seol WH, Park JK (2005) J Power Sources 139:235–241

    Article  CAS  Google Scholar 

  72. Lee YM, Choi NS, Lee JA, Seol WH, Cho KY, Jung HY, Kim JW, Park JK (2005) J Power Sources 146:431–435

    Article  CAS  Google Scholar 

  73. Pekala RW, Khavari M (2003) US Patent 6586138

  74. Zhang SS, Xu K, Jow TR (2005) J Power Sources 140:361–364

    Article  CAS  Google Scholar 

  75. Cho TH, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T (2008) J Electrochem Soc 155:A699–A703

    Article  CAS  Google Scholar 

  76. Shinohara Y, Tsujimoto Y, Nakano T (1999) US Patent 6447958

  77. Augustin S, Hennige VD, Horpel G, Hying C (2002) Desalination 146:23–28

    Article  CAS  Google Scholar 

  78. Henninge V, Hying C, Horpel G (2010) US Patent 7807286

  79. Hennige V, Hying C, Horpel G, Novak P, Vetter J (2010) US Patent 7709140

  80. Kim SK, Sohn JY, Park JH, Jang HM, Shin BJ, Lee SY, Hong JH (2010) US Patent 7709152

  81. Park JH, Lee SY, Hong JH, Nam MJ, Yoo JA, Kim SS, Han CH (2010) US Patent 7695870

  82. Seo DJ, Kim K, Hong JH, Sohn JY, Lee SY, Ahn SH (2007) US Patent application 20070122716

  83. Lee SY, Seo DJ, Sohn JY, Kim SK, Hong JH, Kim YS Jang HM (2009) US Patent 7638241

  84. Katayama H, Kojima E, Aoyama S, Sato Y (2008) Patent application WO08029922

  85. Tomi H, Sato E, Murayama S, Itou F, Imoto H (2006) Japan Patent JP3831017

  86. Lee KH, Lee YG, Park JK, Seung DY (2000) Solid State Ionics 133:257–263

    Article  CAS  Google Scholar 

  87. Appetecchi GB, Romagnoli P, Scrosati B (2001) Electrochem Commun 3:281–284

    Article  CAS  Google Scholar 

  88. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) J Power Sources 97–98:644–648

    Article  Google Scholar 

  89. Kumar B, Scanlon L, Marsh R, Mason R, Higgins R, Baldwin R (2001) Electrochim Acta 46:1515–1521

    Article  CAS  Google Scholar 

  90. Abraham KM, Koch VR, Blakley TJ (2000) J Electrochem Soc 147:1251–1256

    Article  CAS  Google Scholar 

  91. Hikmet RAM (2001) J Power Sources 92:212–220

    Article  CAS  Google Scholar 

  92. Less GB, Knapp A, Babinec SJ (2009) US Patent application 20090155678

  93. Kim M, Nho YC, Park JH (2010) J Solid State Electrochem 14:769–773

    Article  CAS  Google Scholar 

  94. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

  95. MacMullin RB, Muccini GA (1956) AICHE J 2:393–403

    Article  CAS  Google Scholar 

  96. Thorat IV, Stephenson DE, Zacharias NA, Zaghib K, Harb JN, Wheeler DR (2009) J Power Sources 188:592–600

    Article  CAS  Google Scholar 

  97. Srinivasan V, Newman J (2004) J Electrochem Soc 151:A1530–A1538

    Article  CAS  Google Scholar 

  98. Xiao X, Wu W, Huang X (2010) J Power Sources 195:7649–7660

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Ion C. Halalay, Ingrid A. Rousseau, Hamid G. Kia, and Mark W. Verbrugge at General Motors and Jonathon Hitt at Optimal Resources LLC for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X. Separator technologies for lithium-ion batteries. J Solid State Electrochem 15, 649–662 (2011). https://doi.org/10.1007/s10008-010-1264-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1264-9

Keywords

Navigation