Skip to main content
Log in

Deposition and characterisation of epitaxial oxide thin films for SOFCs

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beckel D et al (2007) Thin films for micro solid oxide fuel cells. J Power Sources 173(1):325–345

    CAS  Google Scholar 

  2. Kreuer KD (2003) Proton conducting oxides. Annu Rev Mater Res 33:333–359

    CAS  Google Scholar 

  3. Freund LB, Suresh S (2003) Thin film materials: stress, defect formation, and surface evolution. Cambridge University Press, Cambridge

    Google Scholar 

  4. Hegde MS (2001) Epitaxial oxide thin films by pulsed laser deposition: retrospect and prospect. J Chem Sci 113(5):445–458

    CAS  Google Scholar 

  5. Ohring M (2002) Characterization of thin films and surfaces, in materials science of thin films, 2nd edn. Academic, San Diego, pp 559–640

    Google Scholar 

  6. Habermeier H-U (2007) Thin films of perovskite-type complex oxides. Mater Today 10(10):34–43

    CAS  Google Scholar 

  7. Kumigashira H et al (2004) Surface electronic structures of terminating-layer-controlled La0.6Sr0.4MnO3 thin films studied by in situ synchrotron-radiation photoemission spectroscopy. J Magn Magn Mater 272–276(Part 2):1120–1121

    Google Scholar 

  8. Kawasaki M et al (1994) Atomic control of the SrTiO3 crystal surface. Science 266(5190):1540–1542

    CAS  Google Scholar 

  9. Koster G et al (1998) Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl Phys Lett 73(20):2920–2922

    CAS  Google Scholar 

  10. Mori D et al (2006) Synthesis, structure, and electrochemical properties of epitaxial perovskite La0.8Sr0.2CoO3 film on YSZ substrate. Solid State Ionics 177(5–6):535–540

    CAS  Google Scholar 

  11. Shinomori S, Kawasaki M, Tokura Y (2002) Orientation-controlled epitaxy and anisotropic properties of La2 − x Sr x NiO4 with 0.5 <= x <= 1.5 covering the insulator-metal transition. Appl Phys Lett 80(4):574–576

    CAS  Google Scholar 

  12. Inoue S et al (2010) Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nat Chem 2(3):213–217

    CAS  Google Scholar 

  13. Guo X, Maier J (2009) Ionically conducting two-dimensional heterostructures. Adv Mater 21(25–26):2619–2631

    CAS  Google Scholar 

  14. Riess I (1996) Review of the limitation of the Hebb–Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors. Solid State Ionics 91(3–4):221–232

    CAS  Google Scholar 

  15. Gellings PJ, Bouwmeester HJM (1997) The CRC handbook of solid state electrochemistry. CRC, Boca Raton, p 630

    Google Scholar 

  16. Chiang YM et al (1996) Defect and transport properties of nanocrystalline CeO2 − x . Appl Phys Lett 69(2):185–187

    CAS  Google Scholar 

  17. Rothschild A et al (2006) Electronic structure, defect chemistry, and transport properties of SrTi1 − x Fe x O3 − y solid solutions. Chem Mater 18(16):3651–3659

    CAS  Google Scholar 

  18. Solis C et al (2010) Defect structure, charge transport mechanisms, and strain effects in Sr4Fe6O12 + δ epitaxial thin films. Chem Mater 22(4):1452–1461

    CAS  Google Scholar 

  19. Patrakeev MV et al (2003) Electron/hole and ion transport in La1 − x Sr x FeO3 − δ . J Solid State Chem 172(1):219–231

    CAS  Google Scholar 

  20. Stevenson JW et al (1996) Electrochemical properties of mixed conducting perovskites La(1 − x)M(x)Co(1 − y)Fe(y)O(3 − δ) (M = Sr, Ba, Ca). J Electrochem Soc 143(9):2722–2729

    CAS  Google Scholar 

  21. Tai LW et al (1995) Structure and electrical properties of La1 − x Sr x Co1 − y Fe y O3.1. The system La0.8Sr0.2Co1 − y Fe y O3. Solid State Ionics 76(3–4):259–271

    CAS  Google Scholar 

  22. Maier J (1998) On the correlation of macroscopic and microscopic rate constants in solid state chemistry. Solid State Ionics 112(3–4):197–228

    CAS  Google Scholar 

  23. Kim G et al (2006) Measurement of oxygen transport kinetics in epitaxial LaNiO4 + δ thin films by electrical conductivity relaxation. Solid State Ionics 177(17–18):1461–1467

    CAS  Google Scholar 

  24. Tsuchiya M et al (2009) Microstructural effects on electrical conductivity relaxation in nanoscale ceria thin films. J Chem Phys 130(17):174711

    Google Scholar 

  25. Tragut C, Härdtl KH (1991) Kinetic behaviour of resistive oxygen sensors. Sensor Actuat B Chem 4(3–4):425–429

    Google Scholar 

  26. Burriel M et al (2010) BSCF epitaxial thin films: electrical transport and oxygen surface exchange. Solid State Ionics 181(13–14):602–608

    CAS  Google Scholar 

  27. Maier J (2004) Physical chemistry of ionic materials. Ions and electrons in solids. Wiley, England, p 538

    Google Scholar 

  28. Burriel M et al (2008) Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4 + δ . J Mater Chem 18(4):416–422

    CAS  Google Scholar 

  29. Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  30. Yamada A et al (2008) Ruddlesden–Popper-type epitaxial film as oxygen electrode for solid-oxide fuel cells. Adv Mater 20(21):4124–4128

    CAS  Google Scholar 

  31. Mori D et al (2007) Synthesis, structure and electrochemical properties of epitaxial perovskite films deposited on YSZ substrate. In: Eguchi K et al (eds) Solid oxide fuel cells, vol 10. Electrochemical Society, Pennington, pp 749–756

    Google Scholar 

  32. Badwal SPS, Foger K (1996) Solid oxide electrolyte fuel cell review. Ceram Int 22(3):257–265

    CAS  Google Scholar 

  33. Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213

    CAS  Google Scholar 

  34. Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162(1):30–40

    CAS  Google Scholar 

  35. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128

    CAS  Google Scholar 

  36. Haile SM (2003) Fuel cell materials and components. Acta Mater 51(19):5981–6000

    CAS  Google Scholar 

  37. Ivers-Tiffee E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21(10–11):1805–1811

    CAS  Google Scholar 

  38. Kharton VV et al (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36(5):1105–1117

    CAS  Google Scholar 

  39. Maricle DL, Swarr TE, Karavolis S (1992) Enhanced ceria—a low-temperature SOFC electrolyte. Solid State Ionics 52(1–3):173–182

    CAS  Google Scholar 

  40. Minh NQ (1993) Ceramic fuel-cells. J Am Ceram Soc 76(3):563–588

    CAS  Google Scholar 

  41. Mizutani Y et al (1994) Development of high-performance electrolyte in SOFC. Solid State Ionics 72:271–275

    CAS  Google Scholar 

  42. Ralph JM, Schoeler AC, Krumpelt M (2001) Materials for lower temperature solid oxide fuel cells. J Mater Sci 36(5):1161–1172

    CAS  Google Scholar 

  43. Singh P, Minh NQ (2004) Solid oxide fuel cells: technology status. Int J Appl Ceram Tec 1(1):5–15

    CAS  Google Scholar 

  44. Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135(1–4):305–313

    CAS  Google Scholar 

  45. Steele BCH (2000) Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? Solid State Ionics 134(1–2):3–20

    CAS  Google Scholar 

  46. Baumann FS et al (2006) Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3 − δ model electrodes. Solid State Ionics 177(11–12):1071–1081

    CAS  Google Scholar 

  47. Fleig J, Maier J (2004) The polarization of mixed conducting SOFC cathodes: effects of surface reaction coefficient, ionic conductivity and geometry. J Eur Ceram Soc 24(6):1343–1347

    CAS  Google Scholar 

  48. Holtappels P, Bagger C (2002) Fabrication and performance of advanced multi-layer SOFC cathodes. J Eur Ceram Soc 22(1):41–48

    CAS  Google Scholar 

  49. Huang KQ et al (1997) Electrode performance test on single ceramic fuel cells using as electrolyte Sr- and Mg-doped LaGaO3. J Electrochem Soc 144(10):3620–3624

    CAS  Google Scholar 

  50. Jiang SP, Love JG, Apateanu L (2003) Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. Solid State Ionics 160(1–2):15–26

    CAS  Google Scholar 

  51. Jorgensen MJ, Mogensen M (2001) Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J Electrochem Soc 148(5):A433–A442

    CAS  Google Scholar 

  52. Jorgensen MJ et al (2001) Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics 139(1–2):1–11

    CAS  Google Scholar 

  53. Kuznecov M et al (2003) Diffusion controlled oxygen transport and stability at the perovskite/electrolyte interface. Solid State Ionics 157(1–4):371–378

    CAS  Google Scholar 

  54. Lee HY, Oh SM (1996) Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface. Solid State Ionics 90(1–4):133–140

    CAS  Google Scholar 

  55. Mauvy F et al (2003) Oxygen electrode reaction on Nd2NiO4 + δ cathode materials: impedance spectroscopy study. Solid State Ionics 158(1–2):17–28

    CAS  Google Scholar 

  56. Mitterdorfer A, Gauckler LJ (1998) La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O−2/YSZ system. Solid State Ionics 111(3–4):185–218

    CAS  Google Scholar 

  57. Wang SR et al (2002) Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 146(3–4):203–210

    CAS  Google Scholar 

  58. Zhang XG et al (1999) Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte. J Power Sources 83(1–2):170–177

    CAS  Google Scholar 

  59. Zhang XG et al (2000) Interface reactions in the NiO–SDC–LSGM system. Solid State Ionics 133(3–4):153–160

    CAS  Google Scholar 

  60. Kawada T et al (1992) Reaction between solid oxide fuel-cell materials. Solid State Ionics 50(3–4):189–196

    CAS  Google Scholar 

  61. Vanroosmalen JAM, Cordfunke EHP (1992) Chemical-reactivity and interdiffusion of (La, Sr)MnO3 and (Zr, Y)O2, solid oxide fuel-cell cathode and electrolyte materials. Solid State Ionics 52(4):303–312

    CAS  Google Scholar 

  62. Tomida K, Namikawa T, Yamazaki Y (1994) Tensile test of corrugated 8-YSZ thin-films for SOFC. Denki Kagaku 62(11):1043–1047

    CAS  Google Scholar 

  63. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    CAS  Google Scholar 

  64. Jung W, Hertz JL, Tuller HL (2009) Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ). Acta Mater 57(5):1399–1404

    CAS  Google Scholar 

  65. Kosacki I et al (2004) Surface/interface-related conductivity in nanometer thick YSZ films. Electrochem Solid St 7(12):A459–A461

    CAS  Google Scholar 

  66. Kosacki I et al (2005) Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176(13–14):1319–1326

    CAS  Google Scholar 

  67. Karthikeyan A, Chang C-L, Ramanathan S (2006) High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects. Appl Phys Lett 89(18):183116

    Google Scholar 

  68. Tschöpe A, Birringer R (2001) Grain size dependence of electrical conductivity in polycrystalline cerium oxide. J Electroceram 7(3):169–177

    Google Scholar 

  69. Kim S, Maier J (2002) On the conductivity mechanism of nanocrystalline ceria. J Electrochem Soc 149(10):J73–J83

    CAS  Google Scholar 

  70. Tschöpe A (2001) Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: space charge model. Solid State Ionics 139(3–4):267–280

    Google Scholar 

  71. Lavik EB et al (1997) Nonstoichiometry and electrical conductivity of nanocrystalline CeO. J Electroceram 1(1):7–14

    Google Scholar 

  72. Suzuki T, Kosacki I, Anderson HU (2002) Microstructure electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ionics 151(1–4):111–121

    CAS  Google Scholar 

  73. Rupp JLM, Gauckler LJ (2006) Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ionics 177(26–32):2513–2518

    CAS  Google Scholar 

  74. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126

    CAS  Google Scholar 

  75. Rodewald S, Fleig J, Maier J (2001) Microcontact impedance spectroscopy at single grain boundaries in Fe-doped SrTiO3 polycrystals. J Am Ceram Soc 84(3):521–530

    CAS  Google Scholar 

  76. Fleig J (2002) The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data. Solid State Ionics 150(1–2):181–193

    CAS  Google Scholar 

  77. Abrantes JCC, Labrincha JA, Frade JR (2000) Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. J Eur Ceram Soc 20(10):1603–1609

    CAS  Google Scholar 

  78. Fleig J, Maier J (1999) The impedance of ceramics with highly resistive grain boundaries: validity and limits of the brick layer model. J Eur Ceram Soc 19(6–7):693–696

    CAS  Google Scholar 

  79. Hwang JH, McLachlan DS, Mason TO (1999) Brick layer model analysis of nanoscale-to-microscale cerium dioxide. J Electroceram 3(1):7–16

    CAS  Google Scholar 

  80. Kidner NJ et al (2008) The brick layer model revisited: introducing the nano-grain composite model. J Am Ceram Soc 91(6):1733–1746

    CAS  Google Scholar 

  81. Nan CW et al (2001) Grain-boundary-controlled impedances of electroceramics: generalized effective-medium approach and brick-layer model. J Appl Phys 89(7):3955–3959

    CAS  Google Scholar 

  82. Rupp JLM et al (2009) Crystallization and grain growth kinetics for precipitation-based ceramics: a case study on amorphous ceria thin films from spray pyrolysis. Adv Funct Mater 19(17):2790–2799

    CAS  Google Scholar 

  83. Rupp JLM, Infortuna A, Gauckler LJ (2007) Thermodynamic stability of gadolinia-doped ceria thin film electrolytes for micro-solid oxide fuel cells. J Am Ceram Soc 90(6):1792–1797

    CAS  Google Scholar 

  84. Steele BCH (2000) Appraisal of Ce1 − y Gd y O2 − y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129(1–4):95–110

    CAS  Google Scholar 

  85. Wagner C (1972) The electrical conductivity of semi-conductors involving inclusions of another phase. J Phys Chem Solids 33(5):1051–1059

    CAS  Google Scholar 

  86. Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Ch 23(3):171–263

    CAS  Google Scholar 

  87. Sata N et al (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815):946–949

    CAS  Google Scholar 

  88. Sata N et al (2002) Enhanced ionic conductivity and mesoscopic size effects in heterostructures of BaF2 and CaF2. Solid State Ionics 154–155:497–502

    Google Scholar 

  89. Sata N et al (2007) Synthesis of La0.6Sr0.4FeO3/La0.6Sr0.4CoO3 mixed ion conducting superlattices by PLD. Solid State Ionics 178(29–30):1563–1567

    CAS  Google Scholar 

  90. Moore DS, Wright JC (1979) Evidence for cluster control of the defect equilibria in fluorite structure crystals. Chem Phys Lett 66(1):173–176

    CAS  Google Scholar 

  91. Gibson IR, Irvine JTS (1996) Study of the order–disorder transition in yttria-stabilised zirconia by neutron diffraction. J Mater Chem 6(5):895–898

    CAS  Google Scholar 

  92. Goff JP et al (1999) Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 59(22):14202

    CAS  Google Scholar 

  93. Hohnke DK (1981) Ionic conduction in doped oxides with the fluorite structure. Solid State Ionics 5:531–534

    CAS  Google Scholar 

  94. Chockalingam R, Amarakoon VRW, Giesche H (2008) Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications. J Eur Ceram Soc 28(5):959–963

    CAS  Google Scholar 

  95. Azad S et al (2005) Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl Phys Lett 86(13):131906–131909

    Google Scholar 

  96. Kosacki I (2006) Superlattice electrolyte for energy application. Invention disclosure #5-153.1685, February

  97. Perkins JM et al (2010) Anomalous oxidation states in multilayers for fuel cell applications. Adv Funct Mater 20(16):2664–2674

    CAS  Google Scholar 

  98. Sanna S et al (2010) Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small 6(17):1863–1867

    CAS  Google Scholar 

  99. Xia X-L, Ouyang J-H, Liu Z-G (2010) Electrical properties of gadolinium–europium zirconate ceramics. J Am Ceram Soc 93(4):1074–1080

    CAS  Google Scholar 

  100. Korte C et al (2008) Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys Chem Chem Phys 10(31):4623–4635

    CAS  Google Scholar 

  101. Korte C et al (2009) Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatsh Chem 140(9):1069–1080

    CAS  Google Scholar 

  102. Schichtel N et al (2009) Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys Chem Chem Phys 11(17):3043–3048

    CAS  Google Scholar 

  103. Peters A et al (2007) Ionic conductivity and activation energy for oxygen ion transport in superlattices—the multilayer system CSZ (ZrO2 + CaO)/Al2O3. Solid State Ionics 178(1–2):67–76

    CAS  Google Scholar 

  104. Sillassen M et al (2010) Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv Funct Mater 20(13):2071–2076

    CAS  Google Scholar 

  105. Chen L et al (2003) Electrical properties of a highly oriented, textured thin film of the ionic conductor Gd:CeO2 − δ on (001) MgO. Appl Phys Lett 83(23):4737–4739

    CAS  Google Scholar 

  106. Garcia-Barriocanal J et al (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680

    CAS  Google Scholar 

  107. Kushima A, Yildiz B (2009) Role of lattice strain and defect chemistry on the oxygen vacancy migration at the (8.3% Y2O3–ZrO2)/SrTiO3 hetero-interface: a first principles study. ECS Trans 25(2):1599–1609

    CAS  Google Scholar 

  108. Guo X (2009) Comment on “colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science 324(5926):465

    CAS  Google Scholar 

  109. Garcia-Barriocanal J et al (2009) Response to comment on “Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science 324(5926):465

    CAS  Google Scholar 

  110. Cavallaro A et al (2010) Electronic nature of the enhanced conductivity in YSZ–STO multilayers deposited by PLD. Solid State Ionics 181(13–14):592–601

    CAS  Google Scholar 

  111. Orera A, Slater PR (2009) New chemical systems for solid oxide fuel cells. Chem Mater 22(3):675–690

    Google Scholar 

  112. Jacobson AJ (2009) Materials for solid oxide fuel cells. Chem Mater 22(3):660–674

    Google Scholar 

  113. Sun C (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electr 14(7):1125–1144

    CAS  Google Scholar 

  114. Tarancon A et al (2010) Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 20:3799–3813

    CAS  Google Scholar 

  115. Yoon J et al (2009) Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid-oxide fuel cells. Adv Funct Mater 19(24):3868–3873

    CAS  Google Scholar 

  116. Chen X et al (1999) Structure and conducting properties of La0.5Sr0.5CoO3 − δ films on YSZ. Thin Solid Films 350(1–2):130–137

    CAS  Google Scholar 

  117. Chen X et al (1999) Pulsed laser deposition of conducting porous La–Sr–Co–O films. Thin Solid Films 342(1–2):61–66

    CAS  Google Scholar 

  118. Endo A et al (2000) Cathodic reaction mechanism of dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 electrodes for solid oxide fuel cells. Solid State Ionics 135(1–4):353–358

    CAS  Google Scholar 

  119. Imanishi N et al (2004) Impedance spectroscopy of perovskite air electrodes for SOFC prepared by laser ablation method. Solid State Ionics 174(1–4):245–252

    CAS  Google Scholar 

  120. Coocia LG et al (1996) Pulsed laser deposition of novel materials for thin film solid oxide fuel cell applications: Ce0.9Gd0.1O1.95, La0.7Sr0.3CoOy and La0.7Sr0.3Co0.2Fe0.8Oy. Appl Surf Sci 96–98:795–801

    Google Scholar 

  121. Endo A et al (1996) Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes. Solid State Ionics 86–88(Part 2):1191–1195

    Google Scholar 

  122. Endo A et al (1998) Low overvoltage mechanism of high ionic conducting cathode for solid oxide fuel cell. J Electrochem Soc 145(3):L35–L37

    CAS  Google Scholar 

  123. Mizusaki J, Saito T, Tagawa H (1996) A chemical diffusion-controlled electrode reaction at the compact La1 − x Sr x MnO3/stabilized zirconia interface in oxygen atmospheres. J Electrochem Soc 143(10):3065–3073

    CAS  Google Scholar 

  124. Ioroi T et al (1997) Preparation of perovskite-type La1 − x Sr x MnO3 films by vapor-phase processes and their electrochemical properties. J Electrochem Soc 144(4):1362–1370

    CAS  Google Scholar 

  125. Yang YL et al (2000) Impedance studies of oxygen exchange on dense thin film electrodes of La0.5Sr0.5CoO3 − δ . J Electrochem Soc 147(11):4001–4007

    CAS  Google Scholar 

  126. Yang YL et al (2001) Oxygen exchange kinetics on a highly oriented La0.5Sr0.5CoO3 − δ thin film prepared by pulsed-laser deposition. Appl Phys Lett 79(6):776–778

    CAS  Google Scholar 

  127. Ringuedé A, Fouletier J (2001) Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures. Solid State Ionics 139(3–4):167–177

    Google Scholar 

  128. Brichzin V et al (2002) The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia. Solid State Ionics 152–153:499–507

    Google Scholar 

  129. Kawada T et al (2002) Determination of oxygen vacancy concentration in a thin film of La0.6Sr0.4CoO3 − δ by an electrochemical method. J Electrochem Soc 149(7):E252–E259

    CAS  Google Scholar 

  130. Baumann FS et al (2005) Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC cathodes by electrochemical activation. J Electrochem Soc 152(10):A2074–A2079

    CAS  Google Scholar 

  131. Koep E et al (2005) Characteristic thickness for a dense La0.8Sr0.2MnO3 electrode. Electrochem Solid St 8(11):A592–A595

    CAS  Google Scholar 

  132. la O’ GJ, Savinell RF, Shao-Horn Y (2009) Activity enhancement of dense strontium-doped lanthanum manganite thin films under cathodic polarization: a combined AES and XPS study. J Electrochem Soc 156(6):B771–B781

    Google Scholar 

  133. Januschewsky J et al (2009) Optimized La0.6Sr0.4CoO3 − δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv Funct Mater 19(19):3151–3156

    CAS  Google Scholar 

  134. Ruiz de Larramendi I et al (2008) Structure and impedance spectroscopy of Pr1 − x Sr x Fe0.8Co0.2O3 − δ (x = 0.1, 0.2, 0.3) thin films grown by laser ablation. Appl Phys A Mater 93(3):655–661

    CAS  Google Scholar 

  135. Kawada T et al (1999) Oxygen isotope exchange with a dense La0.6Sr0.4CoO3 − δ electrode on a Ce0.9Ca0.1O1.9 electrolyte. Solid State Ionics 121(1–4):271–279

    CAS  Google Scholar 

  136. Kim G et al (2007) Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5 + x with a perovskite related structure and ordered a cations. J Mater Chem 17(24):2500–2505

    CAS  Google Scholar 

  137. Chen X et al (2002) Electrical conductivity relaxation studies of an epitaxial La0.5Sr0.5CoO3 − δ thin film. Solid State Ionics 146(3–4):405–413

    CAS  Google Scholar 

  138. Fister TT et al (2008) In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure. Appl Phys Lett 93(15):151904

    Google Scholar 

  139. la O’ GJ et al (2010) Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew Chem Int Edit 49:5344–5347

    Google Scholar 

  140. Ruddlesden SN, Popper P (1958) Acta Crystallogr 11:54–55

    CAS  Google Scholar 

  141. Garcia G et al (2008) Electrical conductivity and oxygen exchange kinetics of La2NiO4 + δ thin films grown by chemical vapor deposition. J Electrochem Soc 155(3):P28–P32

    CAS  Google Scholar 

  142. Burriel M et al (2008) Enhancing total conductivity of La2NiO4 + δ epitaxial thin films by reducing thickness. J Phys Chem C 112(29):10982–10987

    CAS  Google Scholar 

  143. Bassat JM, Odier P, Loup JP (1994) The semiconductor-to-metal transition in question in La2 − x NiO4 + δ (δ > 0 or δ < 0). J Solid State Chem 110(1):124–135

    CAS  Google Scholar 

  144. Burriel M et al (2007) Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan + 1Ni n O3n + 1 Ruddlesden–Popper series (n = 1, 2, 3, infinity). Chem Mater 19:4056–4062

    CAS  Google Scholar 

  145. Maignan A et al (1999) Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5 + δ , closely related to the “112” structure. J Solid State Chem 142(2):247–260

    CAS  Google Scholar 

  146. Kasper N (2008) Epitaxial growth and properties of (001)-oriented TbBaCo2O6 − δ films. J Appl Phys 103(1):013907

    Google Scholar 

  147. Kim G et al (2006) Oxygen exchange kinetics of epitaxial PrBaCo2O5 + δ thin films. Appl Phys Lett 88(2):024103

    Google Scholar 

  148. Yuan Z et al (2007) Epitaxial behavior and transport properties of PrBaCo2O5 thin films on (001) SrTiO3. Appl Phys Lett 90(21):21211

    Google Scholar 

  149. Liu J et al (2010) Epitaxial nature and transport properties in (LaBa)Co2O5 + δ thin films. Chem Mater 22(3):799–802

    CAS  Google Scholar 

  150. Liu J et al (2010) PO2 dependant resistance switch effect in highly epitaxial (LaBa)Co2O5 + δ thin films. Appl Phys Lett 97(9):094101

    Google Scholar 

  151. Grygiel C et al (2010) A-site order control in mixed conductor NdBaCo2O5 + δ films through manipulation of growth kinetics. Chem Mater 22(6):1955–1957

    CAS  Google Scholar 

  152. Burriel M et al (2010) Influence of the microstructure on the high-temperature transport properties of GdBaCo2O5.5 + δ epitaxial film. Chem Mater 22(19):5512–5520

    CAS  Google Scholar 

  153. Solis C et al (2008) Unusual strain accommodation and conductivity enhancement by structure modulation variations in Sr4Fe6O12 + δ epitaxial films. Adv Funct Mater 18(5):785–793

    CAS  Google Scholar 

  154. Fisher C, Islam M (2005) Mixed ionic/electronic conductors Sr2Fe2O5 and Sr4Fe6O13: atomic-scale studies of defects and ion migration. J Mater Chem 15(31):3200–3207

    CAS  Google Scholar 

  155. Putna ES et al (1995) Ceria-based anodes for the direct oxidation of methane in solid oxide fuel cells. Langmuir 11(12):4832–4837

    CAS  Google Scholar 

  156. Huang B et al (2010) Characterization of the Ni–ScSZ anode with a LSCM–CeO2 catalyst layer in thin film solid oxide fuel cell running on ethanol fuel. J Power Sources 195(10):3053–3059

    CAS  Google Scholar 

  157. Huang H, Holme T, Prinz FB (2010) Increased cathodic kinetics on platinum in IT-SOFCs by inserting highly ionic-conducting nanocrystalline materials. J Fuel Cell Sci Tech 7(4):041012

    Google Scholar 

  158. Tucker MC (2010) Progress in metal-supported solid oxide fuel cells: a review. J Power Sources 195(15):4570–4582

    CAS  Google Scholar 

  159. Bieberle-Hütter A et al (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177(1):123–130

    Google Scholar 

  160. Evans A et al (2009) Micro-solid oxide fuel cells: status, challenges, and chances. Monatsh Chem 140(9):975–983

    CAS  Google Scholar 

  161. Hertz JL, Tuller HL (2004) Electrochemical characterization of thin films for a micro-solid oxide fuel cell. J Electroceram 13(1):663–668

    CAS  Google Scholar 

  162. Muecke UP et al (2008) Micro solid oxide fuel cells on glass ceramic substrates. Adv Funct Mater 18(20):3158–3168

    CAS  Google Scholar 

  163. O’ GJL et al (2007) Recent advances in microdevices for electrochemical energy conversion and storage. Int J Energ Res 31(6–7):548–575

    Google Scholar 

  164. Chen M et al (2009) Preparation and electrochemical properties of Ni-SDC thin films for IT-SOFC anode. J Membrane Sci 334(1–2):138–147

    CAS  Google Scholar 

  165. Ju YW et al (2010) Preparation of Ni–Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO3 based electrolyte film with high power density. J Power Sources 195(19):6294–6300

    CAS  Google Scholar 

  166. Lashtabeg A et al (2010) The effects of templating synthesis procedures on the microstructure of yttria stabilised zirconia (YSZ) and NiO/YSZ templated thin films. Ceram Int 36(2):653–659

    CAS  Google Scholar 

  167. Liu L, Kim GY, Chandra A (2010) Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis. J Power Sources 195(20):7046–7053

    CAS  Google Scholar 

  168. Noh HS et al (2009) Physical and microstructural properties of NiO- and Ni-YSZ composite thin films fabricated by pulsed-laser deposition at T <700 degrees C. J Am Ceram Soc 92(12):3059–3064

    CAS  Google Scholar 

  169. Rezugina E et al (2010) Ni–YSZ films deposited by reactive magnetron sputtering for SOFC applications. Surf Coat Tech 204(15):2376–2380

    CAS  Google Scholar 

  170. Infortuna A et al (2009) Nanoporous Ni–Ce0.8Gd0.2O1.9-thin film cermet SOFC anodes prepared by pulsed laser deposition. Phys Chem Chem Phys 11(19):3663–3670

    CAS  Google Scholar 

  171. Hertz J, Rothschild A, Tuller H (2009) Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces. J Electroceram 22(4):428–435

    CAS  Google Scholar 

  172. Choi S-H et al (2006) Fabrication and properties of porous Ni thin films. J Korean Ceram Soc 43(5):265–269

    CAS  Google Scholar 

  173. Brandner M et al (2008) Electrically conductive diffusion barrier layers for metal-supported SOFC. Solid State Ionics 179(27–32):1501–1504

    CAS  Google Scholar 

  174. Chen K et al (2008) Performance of an anode-supported SOFC with anode functional layers. Electrochim Acta 53(27):7825–7830

    CAS  Google Scholar 

  175. Cheng Z, Zha SW, Liu ML (2006) Stability of materials as candidates for sulfur-resistant anodes of solid oxide fuel cells. J Electrochem Soc 153(7):A1302–A1309

    CAS  Google Scholar 

  176. Fergus JW (2006) Oxide anode materials for solid oxide fuel cells. Solid State Ionics 177(17–18):1529–1541

    CAS  Google Scholar 

  177. Kolodiazhnyi T, Petric A (2005) The applicability of Sr-deficient n-type SrTiO3 for SOFC anodes. J Electroceram 15(1):5–11

    CAS  Google Scholar 

  178. Kurokawa H et al (2007) Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells. J Power Sources 164(2):510–518

    CAS  Google Scholar 

  179. Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149(1–2):21–28

    CAS  Google Scholar 

  180. Tao S, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2(5):320–323

    CAS  Google Scholar 

  181. Tao S, Irvine JT (2004) Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem Rec 4(2):83–95

    CAS  Google Scholar 

  182. Fleig J, Tuller HL, Maier J (2004) Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints. Solid State Ionics 174(1–4):261–270

    CAS  Google Scholar 

  183. Kuhn M et al (2008) Experimental study of current collection in single-chamber micro solid oxide fuel cells with comblike electrodes. J Electrochem Soc 155(10):B994–B1000

    CAS  Google Scholar 

  184. Tuller HL, Litzelman SJ, Jung W (2009) Micro-ionics: next generation power sources. Phys Chem Chem Phys 11(17):3023–3034

    CAS  Google Scholar 

  185. Frontera C et al (2002) Selective spin-state switch and metal–insulator transition in GdBaCo2O5.5. Phys Rev B 65(18):180405

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Spanish Ministry of Education for funding through different projects (MAT2008-03501, Consolider-Ingenio CSD2008-024). MB would like to acknowledge King Abdullah University of Science and Technology (KAUST) for the funding provided through a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Santiso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiso, J., Burriel, M. Deposition and characterisation of epitaxial oxide thin films for SOFCs. J Solid State Electrochem 15, 985–1006 (2011). https://doi.org/10.1007/s10008-010-1214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1214-6

Keywords

Navigation