Skip to main content

Advertisement

Log in

Surface chemistry and electronics of semiconductor–nanosystem junctions II: enzyme immobilization, charge transport aspects and scanning probe microscopy imaging

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Photoelectrochemically prepared and vapor-phase-induced surface nanotopographies are used for immobilization of enzymes at specific surface sites. The specific nanostructure of step-bunched silicon where the step edges are negatively charged and that of MoTe2, characterized by negatively charged triangular growth defects, are successfully employed for enzyme immobilization. It is shown that, at pH values below the isoelectric point of the enzyme reverse transcriptase (RT), electrostatic interaction via the Debye length of 3–4 nm and the shorter ranged van der Waals attraction superimpose for enzyme adsorption at negatively charged surface sites. Scanning tunneling microscopy (STM) images of reverse transcriptases deposited onto the layered semiconductor MoTe2 are interpreted in analogy to semiconductor–insulator–metal (MIS) device physics by analyzing the electronic properties of the junction between Pt tip (metal), biomolecule (insulator), and n-MoTe2 (semiconductor). The uninhibited current flow in constant-current STM experiments is tentatively interpreted by salvation-assisted detrapping of electrons along the circumference of the proteins where biological water is present. Imaging of the RTs on step-bunched silicon surfaces with tapping mode atomic force microscopy shows spatially selective deposition at negatively charged step edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Engel A (1991) Annu Rev Biophys Biophys Chem 20:79 doi:10.1146/annurev.bb.20.060191.000455

    Article  CAS  Google Scholar 

  2. Baro AM, Miranda R, Alaman J, Garcia N, Binig G et al (1985) Nature 315:253 doi:10.1038/315253a0

    Article  CAS  Google Scholar 

  3. Miles MJ, Carr HJ, McMaster TC, Tatham AS et al (1991) Proc Natl Acad Sci U S A 88:68 doi:10.1073/pnas.88.1.68

    Article  CAS  Google Scholar 

  4. Lindsay S, Thundat T, Nagahara L, Knipping U, Rill R (1989) Science 244:1063 doi:10.1126/science.2727694

    Article  CAS  Google Scholar 

  5. Lewerenz HJ, Jungblut H, Campbell SA, Müller DJ (1992) AIDS Res Hum Retrovir 8:1663

    Article  CAS  Google Scholar 

  6. Jungblut H, Campbell SA, Giersig M, Müller DJ, Lewerenz HJ (1992) Faraday Discuss 94:183 doi:10.1039/fd9929400183

    Article  CAS  Google Scholar 

  7. Guckenberger R, Heim M, Cevc G, Knapp HF, Wiegrabe W, Hillebrand A (1994) Science 266:1538

    Article  CAS  Google Scholar 

  8. Heim M, Steigerwald M, Guckenberger R (1997) J Struct Biol 119:212

    Article  CAS  Google Scholar 

  9. Yin F, Shin H-Kand Kwon Y-S (2005) Biosens Bioelectron 21:21 doi:10.1016/j.bios.2005.04.014

    Article  CAS  Google Scholar 

  10. Neves-Petersen MT, Snabe T, Klitgaard S, Duroux M, Petersen SB (2005) SB. Protein Sci 15:343 doi:10.1110/ps.051885306

    Article  CAS  Google Scholar 

  11. Boozer C, Ladd J, Chen S, Jiang S (2006) Anal Chem 78:1515 doi:10.1021/ac051923l

    Article  CAS  Google Scholar 

  12. Conan A, Bonnet A, Arnrouche A, Spiesser M (1984) J Phys Fr 45:459 doi:10.1051/jphys:01984004503045900

    Article  CAS  Google Scholar 

  13. Skorupska K, Lublow M, Kanis M, Jungblut H, Lewerenz HJ (2005) Appl Phys Lett 87:262101 doi:10.1063/1.2150267

    Article  CAS  Google Scholar 

  14. Skorupska K, Lublow M, Kanis M, Jungblut H, Lewerenz HJ (2005) Electrochem Commun 7:1077 doi:10.1016/j.elecom.2005.07.012

    Article  CAS  Google Scholar 

  15. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Science 256:1783 doi:10.1126/science.1377403

    Article  CAS  Google Scholar 

  16. Campbell SA, Smith JR, Jungblut H, Lewerenz HJ (2007) J Electroanal Chem 599:313 doi:10.1016/j.jelechem.2006.05.035

    Article  CAS  Google Scholar 

  17. Derjarguin BV, Landau L (1941) Acta Physico-Chimica 14:633 (URSS)

    Google Scholar 

  18. Verwey EJ, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  19. Grasso D, Subramanian K, Butkus M, Strevett K, Bergendahl J (2002) Rev Environ Sci Biotechnol 1:17 doi:10.1023/A:1015146710500

    Article  CAS  Google Scholar 

  20. Petsev DN, Vekilov PG (2000) Phys Rev Lett 84:1339 doi:10.1103/PhysRevLett.84.1339

    Article  CAS  Google Scholar 

  21. Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  22. Lewerenz HJ, Gerischer H, Lübke M (1984) J Electrochem Soc 131:100 doi:10.1149/1.2115467

    Article  CAS  Google Scholar 

  23. Skorupska K, Smith JR, Campbell SA, Jungblut H, Lewerenz HJ (2007) ECS Trans 2:63 doi:10.1149/1.2409009

    Article  CAS  Google Scholar 

  24. Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X Jr, Tantillo C et al (1993) Proc Natl Acad Sci U S A 90:6320 doi:10.1073/pnas.90.13.6320

    Article  CAS  Google Scholar 

  25. Garcia S, Bao H, Hines MA (2004) Phys Rev Lett 93:166102 doi:10.1103/PhysRevLett.93.166102

    Article  CAS  Google Scholar 

  26. Müller B, Restle T, Kühnel H, Goody RS (1991) J Biol Chem 266:14709

    Google Scholar 

  27. Starnes MC, Cheng YC (1989) J Biol Chem 264:7073

    CAS  Google Scholar 

  28. Skasko M, Weiss KK, Reynolds HM, Jamburuthugoda V, Lee K, Kim B (2005) J Biol Chem 280:12190 doi:10.1074/jbc.M412859200

    Article  CAS  Google Scholar 

  29. Charneau P, Clavel F (1991) J Virol 65:2415

    CAS  Google Scholar 

  30. Rocksroh JK, Mauss S (2004) J Antimicrob Chemother 53:700 doi:10.1093/jac/dkh161

    Article  CAS  Google Scholar 

  31. Fan FRF, Bard AJ (1995) Science 270:1849 doi:10.1126/science.270.5243.1849

    Article  CAS  Google Scholar 

  32. Marcus RA (1965) J Chem Phys 43:679 doi:10.1063/1.1696792

    Article  CAS  Google Scholar 

  33. Rosokha SV, Newton MD, Head-Gordon M, Kochi JK (2006) CPPC 324:117

    CAS  Google Scholar 

  34. Cave RJ, Newton MD (1997) J Chem Phys 106:9213 doi:10.1063/1.474023

    Article  CAS  Google Scholar 

  35. Giese B (2000) Acc Chem Res 33:631 doi:10.1021/ar990040b

    Article  CAS  Google Scholar 

  36. Lewerenz HJ (1993) J Electroanal Chem 356:121 doi:10.1016/0022-0728(93)80515-J

    Article  CAS  Google Scholar 

  37. Schlag EW, Sheu S-Y, Yang D-Y, Selzle HL, Lin SH (2000) Proc Natl Acad Sci U S A 97:1068 doi:10.1073/pnas.97.3.1068

    Article  CAS  Google Scholar 

  38. Kambhampati P, Son DH, Kee TW, Barbara PF (2002) J Phys Chem A 106:2374 doi:10.1021/jp014291p

    Article  CAS  Google Scholar 

  39. Paik DH, Lee IR, Yang D-S, Baskin JS, Zewail AH (2004) Science 306:672 doi:10.1126/science.1102827

    Article  CAS  Google Scholar 

  40. Coe JV, Earhart AD, Cohen MH, Hoffman GJ, Sarkas HW, Bowen KH (1997) J Phys Chem 107:6023 doi:10.1063/1.474271

    Article  CAS  Google Scholar 

  41. Gerischer H (1960) Z Phys Chem NF 6:223

    Google Scholar 

  42. Gerischer H (1961) Z Phys Chem NF 26:40

    Google Scholar 

  43. Lewerenz HJ (2008) Phys Status Solidi (in press)

  44. v Helmholtz H (1879) Wiedemanns. Ann Phys 7:337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Lewerenz.

Additional information

Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical/Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewerenz, H.J., Skorupska, K., Smith, J.R. et al. Surface chemistry and electronics of semiconductor–nanosystem junctions II: enzyme immobilization, charge transport aspects and scanning probe microscopy imaging. J Solid State Electrochem 13, 195–203 (2009). https://doi.org/10.1007/s10008-008-0641-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0641-0

Keywords

Navigation