Skip to main content
Log in

The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The role of edge-plane-like defects at the open ends of multiwalled carbon nanotubes (MWCNTs) and at hole defects in the tube walls is explored using cyclic voltammetry with two charged redox probes, namely potassium ferrocyanide and hexaamineruthenium(III) chloride in unbuffered aqueous solutions, and one neutral redox probe, norepinephrine, in pH 5.7 buffer. Further, the presence of oxygen-containing functional groups (such as phenol, quinonyl and carboxyl groups), which decorate the edge-plane defect sites on the voltammetric response of the MWCNTs, is also explored. To this end, three different pre-treatments were performed on the pristine MWCNTs made using the arc-discharge method (arc-MWCNTs). These were (a) arc-MWCNTs were subjected to acid oxidation to form acid-MWCNTs—open-ended MWCNTs also possessing numerous hole defects revealing a large number of edge-plane-like sites heavily decorated with surface functional groups; (b) acid-MWCNTs, which were subsequently vacuum-annealed at 900 °C to remove the functional groups but leaving the many undecorated edge-plane-like sites exposed (ann-MWCNTs); (c) ann-MWCNTs, which were subjected to a further vacuum “super-annealing” stage at 1,750 °C (sup-MWCNTs), which caused the hole defects to close and also closed the tube ends, thereby, restoring the original, pristine, almost edge-plane defect-free MWCNTs structure. The results of the voltammetric characterisation of the acid-, ann- and sup-MWCNTs provide further evidence that edge-plane-like sites are the electroactive sites on MWCNTs. The presence of oxygen-containing surface groups is found to inhibit the rate of electron transfer at these sites under the conditions used herein. Finally, the two charged, “standard” redox probes used were found to undergo strong interactions with the oxygen-containing surface groups present. Thus, we advise caution when using these redox probes to attempt to voltammetrically characterise MWCNTs, and by extension, graphitic carbon surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Monthioux M, Kuznetsov VL (2006) Carbon 44:1621

    Article  CAS  Google Scholar 

  2. Oberlin A, Endo M (1976) J Cryst Growth 32:335

    Article  CAS  Google Scholar 

  3. Wiles PG, Abrahamson J (1978) Carbon 16:341

    Article  CAS  Google Scholar 

  4. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  5. http://www.nano-lab.com/

  6. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187

    Article  CAS  Google Scholar 

  7. Leonhardt R, Ritschel M, Bartsch K, Graff A, Taschner C, Fink J (2001) J Physique IV: Proc 11:Pr3/445

    CAS  Google Scholar 

  8. Wang YY, Tang GY, Koeck FAM, Brown B, Garguilo JM, Nemanich RJ (2004) Diamond Rel Mater 13:1287

    Article  CAS  Google Scholar 

  9. Ebbesen TW (1994) NATO ASI Ser C 443:11

    CAS  Google Scholar 

  10. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354

    Article  Google Scholar 

  11. Liu C, Cong HT, Li F, Tan PH, Cheng HM, Lu K, Zhou BL (1999) Carbon 37:1865

    Article  CAS  Google Scholar 

  12. Dai X, Wildgoose GG, Compton RG (2006) Analyst 131:901

    Article  CAS  Google Scholar 

  13. Kruusma J, Mould N, Jurkschat K, Crossley A, Banks CE (2007) Electrochem Commun 9:2330

    Article  CAS  Google Scholar 

  14. Jones CP, Jurkschat K, Crossley A, Compton RG, Riehl BL, Banks CE (2007) Langmuir 23:9501

    Article  CAS  Google Scholar 

  15. Jurkschat K, Ji X, Crossley A, Compton RG, Banks CE (2007) Analyst 132:21

    Article  CAS  Google Scholar 

  16. Sljukic B, Banks CE, Compton RG (2006) Nano Lett 6:1556

    Article  CAS  Google Scholar 

  17. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem Int Ed 45:2533

    Article  CAS  Google Scholar 

  18. Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) Sens Act B. DOI 10.1016/j.snb.2008.01.049

  19. Banks CE, Compton RG (2005) Anal Sci 21:1263

    Article  CAS  Google Scholar 

  20. Banks CE, Compton RG (2006) Analyst 131:15

    Article  CAS  Google Scholar 

  21. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Chem Commun 7:829

    Article  CAS  Google Scholar 

  22. Thorogood CA, Wildgoose GG, Crossley A, Jacobs RMJ, Jones JH, Compton RG (2007) Chem Mater 19:4964

    Article  CAS  Google Scholar 

  23. Masheter AT, Xiao L, Wildgoose GG, Crossley A, Jones JH, Compton RG (2007) J Mater Chem 17:3515

    Article  CAS  Google Scholar 

  24. Thorogood CA, Wildgoose GG, Jones JH, Compton RG (2007) New J Chem 31:958

    Article  CAS  Google Scholar 

  25. Dumitrescu I, Wilson NR, Macpherson JV (2007) J Phys Chem C 111:12944

    Article  CAS  Google Scholar 

  26. Du Vall S, Yang H-H, McCreery RL (1999) Proc Electrochem Soc 99-5:33

    CAS  Google Scholar 

  27. McCreery RL, Cline KK, McDermott CA, McDermott MT (1994) Coll Surf A 93:211

    Article  CAS  Google Scholar 

  28. Cline KK, McDermott MT, McCreery RL (1994) J Phys Chem 98:5314

    Article  CAS  Google Scholar 

  29. McDermott CA, Kneten KR, McCreery RL (1993) J Electrochem Soc 140:2593

    Article  CAS  Google Scholar 

  30. Ranganathan S, Kuo T-C, McCreery RL (1999) Anal Chem 71:3574

    Article  CAS  Google Scholar 

  31. Chou A, Boecking T, Singh NK, Gooding JJ (2005) Chem Commun 7:842

    Article  CAS  Google Scholar 

  32. Banks CE, Ji X, Crossley A, Compton RG (2006) Electroanalysis 18:2137

    Article  CAS  Google Scholar 

  33. Ji X, Banks CE, Crossley A, Compton RG (2006) ChemPhysChem 7:1337

    Article  CAS  Google Scholar 

  34. Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Electroanalysis 17:38

    Article  CAS  Google Scholar 

  35. Henstridge MC, Shao L, Wildgoose GG, Compton RG, Tobias G, Green MLH (2008) Electroanalysis 20:498

    Article  CAS  Google Scholar 

  36. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253

    Article  CAS  Google Scholar 

  37. Kuznetsova A, Mawhinney DB, Naumenko V, Yates JT, Liu J, Smalley RE (2000) Chem Phys Lett 321:292

    Article  CAS  Google Scholar 

  38. Yudasaka M, Ichihashi T, Kasuya D, Kataura H, Iijima S (2003) Carbon 41:1273

    Article  CAS  Google Scholar 

  39. Bougrine A, Dupont-Pavlovsky N, Naji A, Ghanbaja J, Mareche JF, Billaud D (2001) Carbon 39:685

    Article  CAS  Google Scholar 

  40. Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneip K (2000) Phys Rev B 61:R5137

    Article  CAS  Google Scholar 

  41. Delhaes P, Couzi M, Trinquecoste M, Dentzer J, Hamidou H, Vix-Guterl C (2006) Carbon 44:3005

    Article  CAS  Google Scholar 

  42. Paillet M, Michel T, Meyer JC, Popov VN, Henrard L, Roth S, Sauvajol J-L (2006) Phys Rev Lett 96:257401

    Article  CAS  Google Scholar 

  43. Shanmugan S, Gedanken A (2006) J Phys Chem B 110:2037

    Article  CAS  Google Scholar 

  44. Sveningsson M, Morjan R-E, Nerushev OA, Sato Y, Bäckström J, Campbell EEB, Rohmund F (2001) Appl Phys A 73:409

    Article  CAS  Google Scholar 

  45. Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) J Phys Chem B 106:19361

    Article  CAS  Google Scholar 

  46. Wang YY, Tang GY, Koeck FAM, Brown B, Garguilo JM, Nemanich RJ (2004) Diamond Rel Mater 13:1287

    Article  CAS  Google Scholar 

  47. Tuinistra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  Google Scholar 

  48. Masheter AT, Abiman P, Wildgoose GG, Wong E, Xiao L, Rees NV, Taylor R, Attard GA, Baron R, Crossley A, Jones JH, Compton RG (2007) J Mater Chem 17:2616

    Article  CAS  Google Scholar 

  49. Compton RG, Banks CE (2007) Understanding voltammetry. World Scientific, Singapore

    Google Scholar 

  50. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  51. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, London

    Google Scholar 

  52. Sendt K, Haynes BS (2007) J Phys Chem C 111:5465

    Article  CAS  Google Scholar 

  53. Zhu Z, Lu GQ, Finnerty J, Yang RT (2003) Carbon 41:635

    Article  CAS  Google Scholar 

  54. Diao P, Guo M, Hou Q, Xiang M, Zhang Q (2006) J Phys Chem B 110:20386

    Article  CAS  Google Scholar 

  55. Sabatani E, Rubinstein I (1987) J Phys Chem 91:6663

    Article  CAS  Google Scholar 

  56. Abiman P, Crossley A, Wildgoose GG, Jones JH, Compton RG (2007) Langmuir 23:7847

    Article  CAS  Google Scholar 

  57. Kenakin TP (1981) J Pharm Experiment Therap 216:210

    CAS  Google Scholar 

Download references

Acknowledgment

GGW thanks St John’s College, Oxford for a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Wildgoose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloway, A.F., Wildgoose, G.G., Compton, R.G. et al. The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes. J Solid State Electrochem 12, 1337–1348 (2008). https://doi.org/10.1007/s10008-008-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0542-2

Keywords

Navigation