Skip to main content
Log in

Electrodeposition of Zn–TiO2 nanocomposite films—effect of bath composition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Zn–TiO2 nanocomposite films were prepared by pulsed electrodeposition from acidic zinc sulphate solutions on a Ti support. The influence on the composite structural and morphological characteristics of Zn2+ and TiO2 concentrations in the deposition bath has been investigated. The characterisation of the samples was made by X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS). For all the obtained coatings, the anatase and rutile phases’ most intense diffraction lines were observed between 24° and 28° 2θ, confirming the formation of the Zn–TiO2 nanocomposite. X-ray diffraction data show that the presence of the TiO2 nanoparticles plays a remarkable influence on the preferred orientation of the metal matrix. For the more diluted solution, a dependence between the metallic matrix grain size and the concentration of TiO2 in bath is observed. The grain size decreases with the increasing on the nanoparticle amounts. The SEM results for Zn and Zn–TiO2 deposits indicate that the nanoparticles have a strong influence on the deposit surface morphology, which is caused by the changes on the deposition mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bard AJ, Stratmann M (2002) Semiconductor electrodes and photoelectrochemistry. In: Licht S (ed) Encyclopedia of electrochemistry, vol 6. Wiley-VCH, Weinheim, p 44

    Google Scholar 

  2. Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Technol 201:371

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1

    Article  CAS  Google Scholar 

  4. Ito S, Deguchi T, Imai K, Iwasaki M, Tada H (1999) Electrochem Solid-State Lett 2:440

    Article  CAS  Google Scholar 

  5. De Tacconi NR, Boyles AA, Rajeshwar K (2000) Langmuir 16:5665

    Article  Google Scholar 

  6. Deguchi T, Imai K, Matsui H, Iwasaki M, Tada H, Ito S (2001) J Mater Sci 36:4723

    Article  CAS  Google Scholar 

  7. Zhou M, de Tacconi NR, Rajeshwar K (1997) J Electroanal Chem 421:111

    Article  CAS  Google Scholar 

  8. Gomes A, da Silva Pereira MI, Mendonça MH, Costa FM (2005) J Solid State Electrochem 9:190

    Article  CAS  Google Scholar 

  9. Pozzo RL, Baltanás MA, Cassano AE (1997) Cat Today 39:219

    Article  CAS  Google Scholar 

  10. Bérubé LPh, L’Espérance G (1989) J Electrochem Soc 136:2314

    Article  Google Scholar 

  11. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, p 284

  12. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) J Electroanal Chem 159:267

    Article  CAS  Google Scholar 

  13. Trejo G, Ortega R, Meas Y, Ozil VP, Chainet E, Nguyen B (1998) J Electrochem Soc 145:4090

    Article  CAS  Google Scholar 

  14. Aslanidis D, Fransaer J, Celis JP (1997) J Electrochem Soc 144:2352

    Article  CAS  Google Scholar 

  15. Power Diffraction File Alphabetical Index (1988) JCPDS-ICDD International Center for Diffraction Data (ed), Swarthmore, USA File 4-0831

  16. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 51:1342

    Article  CAS  Google Scholar 

  17. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 52:863

    Article  CAS  Google Scholar 

  18. Vasilakopoulos D, Bouroushian M, Spyrellis N (2006) J Mater Sci 41:2869

    Article  CAS  Google Scholar 

  19. Hou F, Wang W, Guo H (2006) Appl Surf Sci 252:3812

    Article  CAS  Google Scholar 

  20. Benea L, Bonora PL, Borello A, Martelli S (2001) J Electrochem Soc 148:995

    Article  Google Scholar 

  21. Power Diffraction File Alphabetical Index (1988) JCPDS-ICDD International Center for Diffraction Data (ed), Swarthmore USA File 21-1272 for anatase, File 21-1276 for rutile

  22. Hovestad A, Heesen RJCHL, Janssen LJJ (1999) J Appl Electrochem 29:331

    Article  CAS  Google Scholar 

  23. Benea L, Bonora PL, Borello A, Martelli S, Wenger F, Ponthiaux P, Galland J (2001) J Electrochem Soc 148:C461

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support and A. Gomes acknowledges the SFRH/BPD/11605/2002 grant from the Fundação para a Ciência e Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fustes, J., Gomes, A. & da Silva Pereira, M.I. Electrodeposition of Zn–TiO2 nanocomposite films—effect of bath composition. J Solid State Electrochem 12, 1435–1443 (2008). https://doi.org/10.1007/s10008-007-0485-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0485-z

Keywords

Navigation