Skip to main content

Advertisement

Log in

Magnetic field effects on microstructural variation of electrodeposited cobalt films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition process of Co films in a sulfuric acid solution was examined in a magnetic field (0–5 T). The surface morphology of Co films electrodeposited without a magnetic field was drastically modified with the variation of hydrogen gas evolution rate. Crystalline α-Co was formed in the range of pH = 1.5–6.0, while β-Co was not observed. When the magnetic field was superimposed perpendicular to the electric field in the acidic solution (pH = 1.5), the hydrogen evolution rate was promoted by MHD convection, which enhanced the ionic mass transfer (H+ and Co2+) near the electrode surface. Moreover, crystalline β-Co was formed simultaneously with the appearance of the elongated ridge-shape precipitates under a higher magnetic field (≥3 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Saboungi LM, Rosso M, Peter ML (eds) (2005) Special issue of international symposium on material processing for nanostructured devices 2003. J Electroanal Chem 584

  2. Plieth W (ed) (2004) Special issue of 3rd international symposium on electrochemical processing of tailored materials. J Solid State Electrochem 8

  3. Ito Y, Peter L (ed) (2003) Special issue of international symposium on materials processing for nanostructured devices 2001. J Electroanal Chem 559

  4. Armyanov S (2000) Electrochim Acta 45:3323

    Article  CAS  Google Scholar 

  5. Cavallotti PL, Vicenzo A, Bestetti M, Franz S (2003) Surf Coat Technol 76:169–170

    Google Scholar 

  6. Uhlemann M, Krause A, Chopart JP, Gebert A (2005) J Electrochem Soc 152:C817

    Article  CAS  Google Scholar 

  7. Motoyama M, Fukunaka Y, Kikuchi S (2005) Electrochim Acta 51:897

    Article  CAS  Google Scholar 

  8. Bund A, Koehler S, Kuehnlein HH, Plieth W (2003) Electrochim Acta 49:147

    Article  CAS  Google Scholar 

  9. Aogaki R, Fueki K, Mukaibo T (1975) Denki Kagaku 43:504

    CAS  Google Scholar 

  10. Tabakovic I, Riemer S, Sun M, Vasko VA, Kief MT (2005) J Electrochem Soc 152:C851

    Article  CAS  Google Scholar 

  11. Krause A, Hamann C, Uhlemann M, Gebert A, Schultz L (2005) J Magn Magn Mater 261:290–291

    Google Scholar 

  12. Bund A, Ispas A (2005) J Electroanal Chem 575:221

    Article  CAS  Google Scholar 

  13. Coey JMD, Hinds G (2001) J Alloys Compd 326:238

    Article  CAS  Google Scholar 

  14. Fahidy TZ (2001) Prog Surf Sci 68:155

    Article  CAS  Google Scholar 

  15. Matsushima H, Fukunaka Y, Ito Y, Bund A, Plieth W (2006) J Electroanal Chem 587:93

    Article  CAS  Google Scholar 

  16. Matsushima H, Nohira T, Ito Y (2004) Electrochem Solid-State Lett 7:C81

    Article  CAS  Google Scholar 

  17. Matsushima H, Nohira T, Mogi I, Ito Y (2004) Surf Coat Technol 179:245

    Article  CAS  Google Scholar 

  18. Aizi A, Sahari A, Felloussia ML, Schmerber G, Meny C, Dinia A (2004) Appl Surf Sci 228:320

    Article  Google Scholar 

  19. Valizadeh S, George JM, Leisner P, Hultman L (2001) Electrochim Acta 47:865

    Article  CAS  Google Scholar 

  20. Bartlett PN, Birkin PN, Ghanem MA, DeGroot P, Sawicki M (2001) J Electrochem Soc 148:C119

    Article  CAS  Google Scholar 

  21. Cheng TJ, Jorne J, Gau JS (1990) J Electrochem Soc 137:93

    Article  CAS  Google Scholar 

  22. Vicenzo A, Cavallotti PL (2004) Electrochim Acta 49:4079

    Article  CAS  Google Scholar 

  23. Matsushima JT, Trivinho SF, Pereira EC (2006) Electrochim Acta 51:1960

    Article  CAS  Google Scholar 

  24. Cohen HT, Kaplan WD, Yahalom J (2002) Electrochem Solid-State Lett 5:C75

    Article  Google Scholar 

  25. Nakahara S, Mahajan S (1980) J Electrochem Soc 127:283

    Article  CAS  Google Scholar 

  26. Nakano H, Nakahara K, Kawano S, Oue S, Akiyama T, Fukushima H (2002) J Appl Electrochem 32:43

    Article  CAS  Google Scholar 

  27. Fukunaka Y, Aikawa S, Asaki Z (1994) J Electrochem Soc 141:1783

    Article  CAS  Google Scholar 

  28. Motoyama M, Fukunaka Y, Sakka T, Ogata HY (2006) J Electrochem Soc 153:C502

    Article  CAS  Google Scholar 

  29. Wassef O, Fahidy TZ (1976) Electrochim Acta 21:727

    Article  CAS  Google Scholar 

  30. Matsushima H, Fukunaka Y, Yasuda H, Kikuchi S (2005) ISIJ Int 45:1001

    Article  CAS  Google Scholar 

  31. Armyanov S, Vitkova S (1978) Surf Technol 7:319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. S. Kikuchi in Shiga Prefecture University for XRD measurements and his valuable discussion and to Dr. M. Motoyama for the calculations of the surface pH values. Part of this work was performed under the financial aid given to Y. Fukunaka by the Ministry of Education, Science and Technology (Project No. 15360402), for which the authors are grateful. One of the authors, H. Matsushima, wishes to express his sincere gratitude to the Alexander von Humboldt Foundation in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayoshi Matsushima.

Additional information

Contribution to special issue “Magnetic field effects in Electrochemistry”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushima, H., Ispas, A., Bund, A. et al. Magnetic field effects on microstructural variation of electrodeposited cobalt films. J Solid State Electrochem 11, 737–743 (2007). https://doi.org/10.1007/s10008-006-0210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0210-3

Keywords

Navigation