Skip to main content
Log in

Morphology and composition of Ni–Co alloy powders electrodeposited from ammoniacal electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the morphology and phase structure of Ni–Co powders electrodeposited from ammoniacal electrolyte are investigated as a function of alloy powder composition. Composition of the electrolyte, i.e. the ratio of Ni2+/Co2+ concentration is found to influence both, the phase structure and the morphology of Ni–Co alloy powders. It is shown that the current density practically does not influence the morphology of Ni–Co alloy powders as well as alloy powder composition. At the highest ratio of the Ni2+/Co2+ ions typical spongy particles were obtained. With the decrease of the Ni2+/Co2+ ions ratio agglomerates of the size of about 100 μm, composed of a large number of fern-like dendrites on their surface were obtained. At the lowest Ni2+/Co2+ concentration ratio, among more dendritic particles, agglomerates typical for pure Co powder deposition were detected. It is also shown that depending on the Ni2+/Co2+ ratio different types of Ni and Co codeposition could be detected: anomalous and irregular. At the Ni2+/Co2+ ions ratio higher than 1 only β-Ni phase was detected, while at concentration ratios Ni2+/Co2+<1 h.c.p. α-Co phase together with β-Ni phase was detected in the alloy powder deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. German RM (1994) Powder metallurgy science, metal powder industries federation, 2nd edn. Princeton, New Jersey

    Google Scholar 

  2. Popov KI, Pavlović MG (1993) Electrodeposition of metal powders with controlled particle grain size and morphology. In: White RE et al (eds) Modern aspects of electrochemistry, vol 24, Chap 6. Plenum, New York

  3. Elmen GW (1928) J Franklin Inst 206:317

    Article  CAS  Google Scholar 

  4. Elmen GW (1929) J Franklin Inst 207:583

    Article  CAS  Google Scholar 

  5. Elmen GW (1935) Elect Eng 54:1292

    CAS  Google Scholar 

  6. Nicolov I, Darkaoui R, Zhecheva E, Stoyanova R, Dimitrov N, Vitanov T (1997) J Electroanal Chem 429:157

    Article  Google Scholar 

  7. Haenen J, Vischer W, Barendrecht E (1986) J Electroanal Chem 208:273

    Article  CAS  Google Scholar 

  8. Singh RN, Koening JF, Poillerat G, Chartier P (1991) J Electroanal Chem 314:241

    Article  CAS  Google Scholar 

  9. Heller-Ling N, Prestat M, Gautier JL, Koening JF, Poillerat G, Chartier P (1997) Electrochim Acta 42:197

    Article  CAS  Google Scholar 

  10. Marco J, Gancedo J, Gracia M, Gautier J, Rios E, Berry F (2000) J Solid State Chem 153:74

    Article  CAS  Google Scholar 

  11. Carapuca H, Pereira M, Costa F (1990) Mat Res Bull 25:1183

    Article  CAS  Google Scholar 

  12. King W, Tseung A (1974) Electrochim Acta 19:485

    Article  CAS  Google Scholar 

  13. Svegl F, Orel B, Hutchins MG, Kalcher K (1996) J Electrochem Soc 143:1532

    Article  CAS  Google Scholar 

  14. Baydi ML, Poillerat MG, Gautier JL, Rehspringer JL, Koening JF, Chartier P (1994) J Solid State Chem 109:278

    Article  Google Scholar 

  15. Baydi ML, Tiwari SK, Sing RN, Rehspringer JL, Chartier P, Koening JF, Poillerat MG (1995) J Solid State Chem 116:157

    Article  Google Scholar 

  16. Rasiyah P, Tseung A (1995) J Electrochem Soc 130:2384

    Article  Google Scholar 

  17. Rashkova V, Kitova S, Konstantinov I, Vitanov T (2002) Electrochim Acta 47:1555

    Article  CAS  Google Scholar 

  18. Abd El-Halim, Khalil RM (1986) Surf Coat Technol 27:103

    Article  CAS  Google Scholar 

  19. Yur’ev BP, Golubkov LA (1969) Trudy – Leningradskii Politekhnicheskii Institut imeni Kalinina MI (published in Russian) 269:14

    Google Scholar 

  20. Brenner A (1963) Electrodeposition of alloys; principles and practice. Academic, New York

    Google Scholar 

  21. Hansen M, Andrenko K (1958) Constitution of binary alloys. Mc-Graw Hill, New York

    Google Scholar 

  22. Despić AR, Jović VD (1995) In: White RE et al (eds) Modern aspects of electrochemistry, vol 27, Chap 2. Plenum, New York

  23. Horkans T (1981) J Electrochem Soc 128:45

    Article  CAS  Google Scholar 

  24. Jepson F, Meecham S, Salt FW (1955) Trans Inst Metal Finish 32:160

    Google Scholar 

  25. Young CBF, Struyk C (1946) Trans Electrochem Soc 89:383

    Google Scholar 

  26. Schoch EP, Hirsch A (1907) Trans Am Electrochem Soc 11:135

    CAS  Google Scholar 

  27. Jović VD, Tošić N, Stojanović M (1997) J Electroanal Chem 420:43

    Article  Google Scholar 

  28. Lönnberg B (1994) J Mat Sci 29:3224

    Article  Google Scholar 

  29. Ziegler G (1978) Powder Met Int 10:70

    CAS  Google Scholar 

  30. Jović VD, Maksimović V, Pavlović MG, Popov KI (2005) J Solid State Electrochem (in press)

  31. Calusaru A (1979) Electrodeposition of powders from solutions. Elsevier, New York

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Environmental Protection of the Republic of Serbia under the research project “Electrodeposition of Metal Powders at a Constant and Periodically Changing Rate” (1806/2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pavlović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jović, V.D., Jović, B.M., Pavlović, M.G. et al. Morphology and composition of Ni–Co alloy powders electrodeposited from ammoniacal electrolyte. J Solid State Electrochem 10, 959–966 (2006). https://doi.org/10.1007/s10008-005-0047-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0047-1

Keywords

Navigation