, Volume 10, Issue 6, pp 405-410

A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A beta-iron oxyhydroxide (FeOOH) was synthesized via a hydrolyzing route and investigated as a lithium intercalation host. It delivers a capacity of about 170 mAh/g and exhibits good cycling performance when charged/discharged in the voltage range from 1.6 V to 3.3 V. For the first time we have confirmed that FeOOH is suitable for using it as a negative electrode for hybrid electrochemical supercapacitor assembled with an activated carbon positive electrode in 1.0 M LiPF6 ethylene carbonate/dimethyl carbonate (EC/DMC, 1:2 in volume) solution. The cell reveals a slightly sloping voltage profile from 0 V to 2.8 V and gives an estimated specific energy of 45 Wh/kg based on the total weight of two electrode materials, approximately two times of carbon/carbon electrochemical double layer capacitors. The hybrid supercapacitor shows a good cycling performance, it remains approximately 96% of initial capacity after 800 cycles at a charge/discharge rate of 4 C. The capacitor also shows a desirable rate capability, even at 10 C discharge rate, it holds 80% of capacity compared with that at 1 C discharge rate.