Journal of Molecular Modeling

, Volume 19, Issue 9, pp 3813–3819

Molecular dynamics simulations of hydrogen storage capacity of few-layer graphene

  • Cheng-Da Wu
  • Te-Hua Fang
  • Jian-Yuan Lo
  • Yu-Lun Feng
Original Paper

DOI: 10.1007/s00894-013-1918-5

Cite this article as:
Wu, CD., Fang, TH., Lo, JY. et al. J Mol Model (2013) 19: 3813. doi:10.1007/s00894-013-1918-5

Abstract

The adsorption of molecular hydrogen on few-layer graphene (FLG) structures is studied using molecular dynamics simulations. The interaction between graphene and hydrogen molecules is described by the Lennard-Jones potential. The effects of pressure, temperature, number of layers in a FLG, and FLG interlayer spacing are evaluated in terms of molecular trajectories, binding energy, binding force, and gravimetric hydrogen storage capacity (HSC). The simulation results show that the effects of temperature and pressure can offset each other to improve HSC. An insufficient interlayer spacing (0.35 nm) largely limits the HSC of FLG because hydrogen adsorbed at the edges of the graphene prevents more hydrogen from entering the structure. A low temperature (77 K), a high pressure, a large number of layers in a FLG, and a large FLG interlayer spacing maximize the HSC.

Keywords

AdsorptionFew-layer grapheneHydrogenMolecular dynamicsPressure

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cheng-Da Wu
    • 1
  • Te-Hua Fang
    • 1
  • Jian-Yuan Lo
    • 1
  • Yu-Lun Feng
    • 1
  1. 1.Department of Mechanical EngineeringNational Kaohsiung University of Applied SciencesKaohsiung 807Taiwan