Skip to main content
Log in

Interaction between shrimp and white spot syndrome virus through PmRab7-VP28 complex: an insight using simulation and docking studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

White spot disease is a devastating disease of shrimp Penaeus monodon in which the shrimp receptor protein PmRab7 interacts with viral envelop protein VP28 to form PmRab7–VP28 complex, which causes initiation of the disease. The molecular mechanism implicated in the disease, the dynamic behavior of proteins as well as interaction between both the biological counterparts that crafts a micro-environment feasible for entry of virus into the shrimp is still unknown. In the present study, we applied molecular modeling (MM), molecular dynamics (MD) and docking to compute surface mapping of infective amino acid residues between interacting proteins. Our result showed that α-helix of PmRab7 (encompassing Ser74, Ile143, Thr184, Arg53, Asn144, Thr184, Arg53, Arg79) interacts with β-sheets of VP28 (containing Ser74, Ile143, Thr184, Arg53, Asn144, Thr184, Arg53, Arg79) and Arg69-Ser74, Val75-Ile143, Leu73-Ile143, Arg79-Asn144, Ala198-Ala182 bonds contributed in the formation of PmRab7–VP28 complex. Further studies on the amino acid residues and bonds may open new possibilities for preventing PmRab7–VP28 complex formation, thus reducing chances of WSD. The quantitative predictions provide a scope for experimental testing in future as well as endow with a straightforward evidence to comprehend cellular mechanisms underlying the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB, Nauwynck HJ (2008) A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis 31(1):1–18

    Article  CAS  Google Scholar 

  2. Lightner DV (1996) Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas. Rev Sci Tech 15(2):579–601

    CAS  Google Scholar 

  3. Huang HT, Leu JH, Huang PY, Chen LL (2012) A putative cell surface receptor for white spot syndrome virus is a member of a transporter superfamily. PLoS One 7(3):e33216

    Article  CAS  Google Scholar 

  4. Kushwaha SK, Shakya M (2010) Protein interaction network analysis–approach for potential drug target identification in Mycobacterium tuberculosis. J Theor Biol 262(2):284–294

    Article  CAS  Google Scholar 

  5. Awale M, Kumar V, Saravanan P, Mohan CG (2010) Homology modeling and atomic level binding study of Leishmania MAPK with inhibitors. J Mol Model 16(3):475–488

    Article  CAS  Google Scholar 

  6. Gutiérrez-de-Terán H, Nervall M, Ersmark K, Liu P, Janka LK, Dunn B, Hallberg A, Aqvist J (2006) Inhibitor binding to the plasmepsin IV aspartic protease from Plasmodium falciparum. Biochemistry 45(35):10529–10541

    Article  Google Scholar 

  7. Ode H, Nakashima M, Kitamura S, Sugiura W, Sato H (2012) Molecular dynamics simulation in virus research. Front Microbiol 3:258

    Google Scholar 

  8. Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X (2001) Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75(23):11811–11820

    Article  CAS  Google Scholar 

  9. Lu L, Kwang J (2004) Identification of a novel shrimp protein phosphatase and its association with latency-related ORF427 of white spot syndrome virus. FEBS Lett 577(1–2):141–146

    Article  CAS  Google Scholar 

  10. Sieczkarski SB, Whittaker GR (2002) Dissecting virus entry via endocytosis. J Gen Virol 83(Pt 7):1535–1545

    CAS  Google Scholar 

  11. Seabra MC, Mules EH, Hume AN (2002) Rab GTPases, intracellular traffic and disease. Trends Mol Med 8(1):23–30

    Article  CAS  Google Scholar 

  12. Stein MP, Dong J, Wandinger-Ness A (2003) Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev 55(11):1421–1437

    Article  CAS  Google Scholar 

  13. Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW (2006) PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J Virol 80(21):10734–10742

    Article  CAS  Google Scholar 

  14. van Hulten MC, Witteveldt J, Snippe M, Vlak JM (2001) White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 285(2):228–233

    Article  Google Scholar 

  15. Chang YS, Liu WJ, Lee CC, Chou TL, Lee YT, Wu TS, Huang JY, Huang WT, Lee TL, Kou GH, Wang AH, Lo CF (2010) A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins. PLoS One 5(5):e10718

    Article  Google Scholar 

  16. Tang X, Wu J, Sivaraman J, Hew CL (2007) Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship. J Virol 81(12):6709–6717

    Article  CAS  Google Scholar 

  17. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31(13):3375–3380

    Article  CAS  Google Scholar 

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  20. Rak A, Pylypenko O, Niculae A, Pyatkov K, Goody RS, Alexandrov K (2004) Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell 117(6):749–760

    Article  CAS  Google Scholar 

  21. Sali A, Potterton L, Yuan F, Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23(3):318–326

    Article  CAS  Google Scholar 

  22. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  23. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  Google Scholar 

  24. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56, 29

    Article  CAS  Google Scholar 

  25. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  26. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    Article  CAS  Google Scholar 

  27. Pettersen EF, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  28. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH–a hierarchic classification of protein domain structures. Structure 5(8):1093–1108

    Article  CAS  Google Scholar 

  29. Berendsen HJC, Van der Spoel D, Van Drunen R (1995) GROMACS—a message passing parallel molecular dynamics implementation. Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  30. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 16:273–284

    Google Scholar 

  31. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  32. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890

    Article  CAS  Google Scholar 

  33. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  CAS  Google Scholar 

  34. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  Google Scholar 

  35. Sharma A, Nigam A (2010) Structure modeling of novel DNA glycosylase enzyme from oral pathogen Streptococcus sanguinis. Bioinformation 5(3):136–140

    Article  Google Scholar 

  36. Srinivasan K, Stalin T, Sivakumar K (2012) Spectral and electrochemical study of host-guest inclusion complex between 2,4-dinitrophenol and β-cyclodextrin. Spectrochim Acta A Mol Biomol Spectrosc 94:89–100

    Article  CAS  Google Scholar 

  37. Subramaniam S, Mohmmed A, Gupta D (2009) Molecular modeling studies of the interaction between Plasmodium falciparum HslU and HslV subunits. J Biomol Struct Dyn 26(4):473–479

    Article  CAS  Google Scholar 

  38. Verma S, Singh A, Mishra A (2012) Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study. J Mol Graph Model 37:27–38

    Article  CAS  Google Scholar 

  39. Verma S, Singh A, Mishra A (2012) The effect of fulvic acid on pre- and postaggregation state of Aβ(17–42): molecular dynamics simulation studies. Biochim Biophys Acta PMID:22940640

  40. Venugopal S, Mohan R (2012) In silico docking studies of staphylococcus aureus virulent proteins with antimicrobial peptides. Int J Pharm Res Dev 3(12):79–86

    Google Scholar 

  41. Gupta S, Misra G, Pant MC, Seth PK (2011) Prediction of a new surface binding pocket and evaluation of inhibitors against huntingtin interacting protein 14: an insight using docking studies. J Mol Model 17(12):3047–3056

    Article  CAS  Google Scholar 

  42. Gupta S, Misra G, Pant MC, Seth PK (2012) Targeting the epidermal growth factor receptor: exploring the potential of novel inhibitor N-(3-Ethynylphenyl)-6, 7-bis (2-methoxyethoxy) quinolin-4-amine using docking and molecular dynamics simulation. Protein Pept Lett 19(9):955–968

    Article  CAS  Google Scholar 

  43. Gupta S, Misra G, Pant MC, Seth PK (2012) Identification of novel potent inhibitors aginst Bcl-XL anti-apoptotic protein using docking studies. Protein Pept Lett 19(12):1302-1317

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to National Agricultural Bioinformatics Grid Project under National Agricultural Innovation Project, Indian Council of Agricultural Research, New Delhi for providing financial support. We also gratefully acknowledge the necessary facilities provided by the Director, National Bureau of Fish Genetic Resources, Lucknow and the Chief Executive Officer, Biotech Park, Lucknow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nagpure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, A.K., Gupta, S., Verma, S. et al. Interaction between shrimp and white spot syndrome virus through PmRab7-VP28 complex: an insight using simulation and docking studies. J Mol Model 19, 1285–1294 (2013). https://doi.org/10.1007/s00894-012-1672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1672-0

Keywords

Navigation