Skip to main content
Log in

Modulating weak intramolecular interactions through the formation of beryllium bonds: complexes between squaric acid and BeH2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311 + G(3df,2p)// B3LYP/6-31 + G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ mol−1. The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.

The ability of squaric acid to self-associate is significantly enhanced when this molecule forms beryllium bonds with BeH2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hobza P, Zahradník R, Müller-Dethlefs K (2006) The world of non-covalent interactions: 2006. Collect Czechoslov Chem Commun 71:443–531

    Article  CAS  Google Scholar 

  2. Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100(1):143–167

    Article  Google Scholar 

  3. Murray JS, Lane P, Brinck T, Paulsen K, Grice ME, Politzer P (1993) Relationships of critical constants and boiling points to computed molecular-surface properties. J Phys Chem 97(37):9369–9373

    Article  CAS  Google Scholar 

  4. Boyd S, Gravelle M, Politzer P (2006) Nonreactive molecular dynamics force field for crystalline hexahydro-1,3,5-trinitro-1,3,5 triazine. J Chem Phys 124(10):104508

    Article  Google Scholar 

  5. Murray JS, Lane P, Gobel M, Klapotke TM, Politzer P (2009) Intra- and intermolecular electrostatic interactions and their significance for the structure, acidity, and tautomerization behavior of trinitromethane. J Chem Phys 130(10):104304

    Article  Google Scholar 

  6. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br ···O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5(1):155–163

    Article  CAS  Google Scholar 

  7. Politzer P, Murray JS, Lane P, Concha MC (2009) Electrostatically driven complexes of SiF4 with amines. Int J Quantum Chem 109(15):3773–3780

    Article  CAS  Google Scholar 

  8. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757

    Article  CAS  Google Scholar 

  9. Shields ZP, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonds. Int J Quantum Chem 110(15):2823–2832

    Article  CAS  Google Scholar 

  10. Murray JS, Concha MC, Politzer P (2011) Molecular surface electrostatic potentials as guides to Si-O-N angle contraction: tunable sigma-holes. J Mol Model 17(9):2151–2157

    Article  CAS  Google Scholar 

  11. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Sigma-holes, pi-holes and electrostatically-driven interactions. J Mol Model 18(2):541–548

    Article  CAS  Google Scholar 

  12. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. J Mol Model 13(2):291–296

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS, Lane P (2007) Sigma-hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107(15):3046–3052

    Article  CAS  Google Scholar 

  14. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in sigma-hole bonding. J Mol Model 14(8):699–704

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS, Concha MC (2008) Sigma-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14(8):659–665

    Article  CAS  Google Scholar 

  16. Gobel M, Tchitchanov BH, Murray JS, Politzer P, Klapotka TM (2009) Chlorotrinitromethane and its exceptionally short carbon-chlorine bond. Nat Chem 1(3):229–235

    Article  Google Scholar 

  17. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1(2):153–163

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN-R and SiN-R complexes with F-Cl and Cl-2. Theor Chem Accounts 131(2):1114

    Article  Google Scholar 

  19. Pimentel GC, McClelland AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  20. Grabowski SJ (ed) (2006) Hydrogen bonding. New insights. Challenges and advances in computational chemistry and physics, vol 3. Springer, Dordrecht

  21. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  22. Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) Beryllium bonds, do they exist? J Chem Theory Comput 5:2763–2771

    Article  Google Scholar 

  23. Eskandari K (2012) Characteristics of beryllium bonds; a QTAIM study. J Mol Model. doi:10.1007/s00894-012-1360-0

  24. IUPAC Compendium of Chemical Terminology—the Gold Book (2012). http://goldbookiupacorg/indexhtml

  25. Rowsell BD, Gillespie FJ, Heard GL (1999) Ligand close-packing and the lewis acidity of BF3 and BCl3. Inorg Chem 38(21):4659–4662

    Article  CAS  Google Scholar 

  26. Brinck T, Murray JS, Politzer P (1993) A computational analysis of the bonding in boron-trifluoride and boron-trichloride and their complexes with ammonia. Inorg Chem 32(12):2622–2625

    Article  CAS  Google Scholar 

  27. Bessac F, Frenking G (2003) Why is BCl3 a stronger lewis acid with respect to strong bases than BF3? Inorg Chem 42(24):7990–7994

    Article  CAS  Google Scholar 

  28. Alkorta I, Elguero J, Del Bene JE, Mó O, Yáñez M (2010) New insights into factors influencing B-N bonding in X:BH3-nFn and X:BH3-nCln for X = N2, HCN, LiCN, H2CNH, NF3, NH3 and n = 0-3: the importance of deformation. Chem-Eur J 16(39):11897–11905

    Article  CAS  Google Scholar 

  29. Hurtado M, Yáñez M, Herrero R, Guerrero A, Dávalos JZ, Abboud J-LM, Khater B, Guillemin JC (2009) The ever-surprising boron chemistry. Enhanced acidity of phosphine-boranes. Chem Eur J 15:4622–4629

    Article  CAS  Google Scholar 

  30. Martín-Sómer A, Lamsabhi AM, Mó O, Yáñez M (2012) Unexpected acidity enhancement triggered by AlH3 association to phosphines. J Phys Chem A 116:6950–6954

    Article  Google Scholar 

  31. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Cooperativity in multiple unusual weak bonds. Theor Chem Accounts 126:1–14

    Article  CAS  Google Scholar 

  32. Mó O, Yáñez M, Alkorta I, Elguero J (2012) Modulating the strength of hydrogen bonds through beryllium bonds. J Chem Theory Comput 8:2293–2300

    Article  Google Scholar 

  33. Cohen S, Lacher JR, Park JD (1959) Diketocyclobutenediol. J Am Chem Soc 81(13):3480–3480

    Article  CAS  Google Scholar 

  34. Semmingsen D, Hollander FJ, Koetzle TF (1977) Neutron-diffraction study of squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione). J Chem Phys 66(10):4405–4412

    Article  CAS  Google Scholar 

  35. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  37. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111(45):11683–11700

    Article  CAS  Google Scholar 

  38. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  Google Scholar 

  39. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang WT (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    Article  Google Scholar 

  40. Wiberg KB (1968) Application of pople-santry-segal CNDO method to cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1088

    Article  CAS  Google Scholar 

  41. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  42. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403

    Article  CAS  Google Scholar 

  43. Savin A, Nesper R, Wengert S, Fäsler TF (1997) ELF: the electron localization function. Angew Chem Int Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  44. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102(10):1873–1878

    Article  CAS  Google Scholar 

  45. Matta CF, Hernandez-Trujillo J, Tang TH, Bader RFW (2003) Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem Eur J 9(9):1940–1951

    Article  CAS  Google Scholar 

  46. Grabowski S, Sokalski WA, Leszczynski J (2004) Nature of X-H + delta center dot center dot center dot-delta H-Y dihydrogen bonds and X-H-···sigma interaction. J Phys Chem A 108(27):5823–5830

    Article  CAS  Google Scholar 

  47. Hugas D, Simon S, Duran M (2007) Electron density topological properties are useful to assess the difference between hydrogen and dihydrogen complexes. J Phys Chem A 111(20):4506–4512

    Article  CAS  Google Scholar 

  48. Wolstenholme DJ, Matta CF, Cameront TS (2007) Experimental and theoretical electron density study of a highly twisted polycyclic aromatic hydrocarbon: 4-methyl-[4]helicene. J Phys Chem A 111(36):8803–8813

    Article  CAS  Google Scholar 

  49. Alkorta I, Elguero J, Solimannejad M (2008) Dihydrogen bond cooperativity in (HCCBeH)(n) clusters. J Chem Phys 129(6):8

    Article  Google Scholar 

  50. Filippov OA, Tsupreva VN, Golubinskaya LM, Krylova AI, Bregadze VI, Lledos A, Epstein LM, Shubina ES (2009) Proton-transfer and H-2-elimination reactions of trimethylamine alane: role of dihydrogen bonding and lewis acid-base interactions. Inorg Chem 48(8):3667–3678

    Article  CAS  Google Scholar 

  51. Zabardasti A, Kakanejadifard A, Hoseini AA, Solimannejad M (2010) Competition between hydrogen and dihydrogen bonding: interaction of B2H6 with CH3OH and CHnX3-nOH derivatives. Dalton Trans 39(25):5918–5922

    Article  CAS  Google Scholar 

  52. Oliveira BG, Araujo R, Silva JJ, Ramos MN (2010) A theoretical study of three and four proton donors on linear HX ···BeH2 ···HX and bifurcate BeH2 ···2HX trimolecular dihydrogen-bonded complexes with X = CN and NC. Struct Chem 21(1):221–228

    Article  CAS  Google Scholar 

  53. de Oliveira BG, Ramos MN (2010) Dihydrogen bonds and blue-shifting hydrogen bonds: a theoretical study of AH ···HCF3 and TH2 ···HCF3 model systems with A = Li or Na and T = Be or Mg. Int J Quantum Chem 110(2):307–316

    Article  Google Scholar 

  54. Solimannejad M, Malekani M, Alkorta I (2010) Cooperative and diminutive unusual weak bonding in F3CX ···HMgH ···Y and F3CX ···Y ···HMgH trimers (X = Cl, Br; Y = HCN, and HNC). J Phys Chem A 114(45):12106–12111

    Article  CAS  Google Scholar 

  55. Zabardasti A, Zare N, Arabpour M (2011) Theoretical study of dihydrogen bonded clusters of water with tetrahydroborate. Struct Chem 22(3):691–695

    Article  CAS  Google Scholar 

  56. Zabardasti A, Arabpour M (2012) Theoretical study of hydrogen and dihydrogen bond interaction of B6H10 with the HF molecule. Struct Chem 23(2):473–477

    Article  CAS  Google Scholar 

  57. González L, Mó O, Yáñez M, Elguero J (1998) Very strong hydrogen bonds in neutral molecules: the phosphinic acid dimers. J Chem Phys 109(7):2685–2693

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported partially by the Dirección General de Investigación Projects No. CTQ2009-13129-C01, by the Project MADRISOLAR2, Ref.: S2009PPQ/1533 of the Comunidad Autónoma de Madrid, and by Consolider on Molecular Nanoscience CSC2007-00010. A generous allocation of computing time at the Centro de Computación Científica of the Universidad Autónoma de Madrid is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yáñez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero-Campillo, M.M., Lamsabhi, A.M., Mó, O. et al. Modulating weak intramolecular interactions through the formation of beryllium bonds: complexes between squaric acid and BeH2 . J Mol Model 19, 2759–2766 (2013). https://doi.org/10.1007/s00894-012-1603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1603-0

Keywords

Navigation