Journal of Molecular Modeling

, Volume 17, Issue 3, pp 423–428

Near-field enhancement of infrared intensities for f-f transitions in Er3+ ions close to the surface of silicon nanoparticles

  • Lesya Borowska
  • Stephan Fritzsche
  • Pieter G. Kik
  • Artëm E. Masunov
Original Paper

DOI: 10.1007/s00894-010-0708-6

Cite this article as:
Borowska, L., Fritzsche, S., Kik, P.G. et al. J Mol Model (2011) 17: 423. doi:10.1007/s00894-010-0708-6

Abstract

Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state (4I13/2) to the ground state (4I15/2) of Er3+ at 1.53 µm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er3+ ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er3+ emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er3+ ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.

Figure

Erbium replaces Yttrium at the C2 site in the crystal structure of Yttrium sesquioxide, and the nearby Silicon nanocluster enhances the probabilities of the dipole forbidden f-f transitions

Keywords

Ab initio theory Erbium doped waveguide amplifiers Optical gain materials Spin-orbit coupling 

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lesya Borowska
    • 1
    • 3
    • 4
  • Stephan Fritzsche
    • 5
  • Pieter G. Kik
    • 2
  • Artëm E. Masunov
    • 1
  1. 1.NanoScience Technology Center, Department of Chemistry, and Department of PhysicsUniversity of Central FloridaOrlandoUSA
  2. 2.CREOL, The College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA
  3. 3.Institute for Nuclear Research NAS of UkraineKyivUkraine
  4. 4.University of BonnBonnGermany
  5. 5.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany