Skip to main content
Log in

Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A T-DNA tagged mutant line of Arabidopsis thaliana, produced with a promoter trap vector carrying a promoterless gus (uidA) as a reporter gene, showed GUS induction in response to mechanical wounding. Cloning of the chromosomal DNA flanking the T-DNA revealed that the insert had caused a knockout mutation in a PTR-type peptide transporter gene named At5g46050 in GenBank, here renamed AtPTR3. The gene and the deduced protein were characterized by molecular modelling and bioinformatics. Molecular modelling of the protein with fold recognition identified 12 transmembrane spanning regions and a large loop between the sixth and seventh helices. The structure of AtPTR3 resembled the other PTR-type transporters of plants and transporters in the major facilitator superfamily. Computer analysis of the AtPTR3 promoter suggested its expression in roots, leaves and seeds, complex hormonal regulation and induction by abiotic and biotic stresses. The computer-based hypotheses were tested experimentally by exposing the mutant plants to amino acids and several stress treatments. The AtPTR3 gene was induced by the amino acids histidine, leucine and phenylalanine in cotyledons and lower leaves, whereas a strong induction was obtained in the whole plant upon exposure to salt. Furthermore, the germination frequency of the mutant line was reduced on salt-containing media, suggesting that the AtPTR3 protein is involved in stress tolerance in seeds during germination.

Figure a Induction of AtPTR3 gene by amino acids. GUS staining of line 9 plants eight hours after induction with amino acids. Control indicates plant treated with water. His, Leu and Phe indicate plants treated with 10 mM amino acids histidine, leucine or phenylalanine, respectively. b Induction of AtPTR3 gene by salt. GUS staining of line 9 plants grown on MS medium on different salt concentrations: Control indicates plant grown on MS medium and 100 mM, 120 mM and 140 mM indicate plants grown on MS medium supplemented with the indicated NaCl concentrations. Size of the plants grown on salt medium has been magnified. c Germination frequency of Atptr3 knockout mutant line is reduced on salt medium. Atptr3 knockout mutant (9) and wild type C24 (WT) sown on MS medium (Control) and MS medium supplemented with salt (140 mM NaCl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bowie JU, Luethy R, Eisenberg D (1991) Science 253:164–170

    CAS  PubMed  Google Scholar 

  2. Jones DT (1999) J Mol Biol 287:797–815

    Article  CAS  PubMed  Google Scholar 

  3. Jones DT (2000) Curr Opin Struct Biol 10:371–379

    Article  CAS  PubMed  Google Scholar 

  4. Sánchez R, Pieper U, Melo F, Eswar N, Martí-Renom MA, Madhusudhan MS, Mirkovic N, Šali A (2000) Nat Struct Biol 7:986–990

    Article  PubMed  Google Scholar 

  5. Brenner SE, Chothia C, Hubbard TJP (1997) Curr Opin Struct Biol 7:369–376

    Article  CAS  PubMed  Google Scholar 

  6. Šali A, Matsumoto R, McNeil HP, Karplus M, Stevens RL (1993) J Biol Chem 268:9023–9034

    PubMed  Google Scholar 

  7. Fetrow JS, Godzik A, Skolnick J (1998) J Mol Biol 282:703–711

    Article  CAS  PubMed  Google Scholar 

  8. Svensson M, Lundh D, Ejdebäck M, Mandal A (2004) J Mol Model 10:130–138

    Article  CAS  Google Scholar 

  9. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A (2000) Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  Google Scholar 

  10. Arabidopsis Genome Initiative (2000) Nature 408:796–815

    Article  PubMed  Google Scholar 

  11. Springer PS (2000) Plant Cell 12:1007–1020

    Article  CAS  PubMed  Google Scholar 

  12. Valentine L (2003) Plant Physiol 133:948–955

    CAS  PubMed  Google Scholar 

  13. Lindsey K, Wei W, Clarke MC, McArdle HF, Rooke LM, Topping JF (1993) Transgenic Res 2:33–47

    CAS  PubMed  Google Scholar 

  14. Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Koncz C, Koncz-Kalman Z (1998) Plant J 13:707–716

    Article  CAS  PubMed  Google Scholar 

  15. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Science 301:653–657

    Article  PubMed  Google Scholar 

  16. Pao SS, Paulsen IT, Saier MH Jr (1998) Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  Google Scholar 

  17. Abramson J, Iwata S, Kaback HR (2004) Mol Membr Biol 21:227–236

    Article  CAS  PubMed  Google Scholar 

  18. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  19. Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  20. Hirai T, Heymann JAW, Maloney PC, Subramaniam S (2003) J Bacteriol 185:1712–1718

    Article  CAS  PubMed  Google Scholar 

  21. Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S (2004) Protein Sci 13:1832–1840

    Article  CAS  PubMed  Google Scholar 

  22. Saier MH Jr (2000) Microbiol Mol Biol Rev 64:354–411

    Article  CAS  PubMed  Google Scholar 

  23. Saier MH Jr (2000) Microbiology 146:1775–1795

    CAS  PubMed  Google Scholar 

  24. Paulsen IT, Skurray RA (1994) Trends Biochem Sci 19:404–405

    Article  CAS  PubMed  Google Scholar 

  25. Steiner HY, Naider F, Becker JM (1995) Mol Microbiol 16:825–834

    CAS  PubMed  Google Scholar 

  26. Chang AB, Lin R, Studley WK, Tran CV, Saier MH Jr (2004) Mol Membr Biol 21:171–181

    Article  CAS  PubMed  Google Scholar 

  27. Chiang C-S, Stacey G, Tsay Y-F (2004) J Biol Chem 279:30150–30157

    Article  CAS  PubMed  Google Scholar 

  28. Huang N-C, Liu K-H, Lo H-J, Tsay Y-F (1999) Plant Cell 11:1381–1392

    Article  CAS  PubMed  Google Scholar 

  29. Lin C-M, Koh S, Stacey G, Yu S-M, Lin T-Y, Tsay Y-F (2000) Plant Physiol 122:379–388

    Article  CAS  PubMed  Google Scholar 

  30. Galván A, Fernández E (2001) Cell Mol Life Sci 58:225–233

    PubMed  Google Scholar 

  31. Frommer WB, Hummel S, Rentsch D (1994) FEBS Lett 347:185–189

    Article  CAS  PubMed  Google Scholar 

  32. Zhou J-J, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ (1998) J Biol Chem 273:12017–12023

    Article  CAS  PubMed  Google Scholar 

  33. Jeong J, Suh SJ, Guan C, Tsay Y-F, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) Plant Physiol 134:969–978

    Article  CAS  PubMed  Google Scholar 

  34. Stacey G, Koh S, Granger C, Becker JM (2002) Trends Plant Sci 7:257–263

    Article  CAS  PubMed  Google Scholar 

  35. Song W, Steiner H-Y, Zhang L, Naider F, Stacey G, Becker JM (1996) Plant Physiol 110:171–178

    Article  CAS  PubMed  Google Scholar 

  36. Song W, Koh S, Czako M, Marton L, Drenkard E, Becker JM, Stacey G (1997) Plant Physiol 114:927–935

    Article  CAS  PubMed  Google Scholar 

  37. Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) FEBS Lett 370:264–268

    Article  CAS  PubMed  Google Scholar 

  38. Dietrich D, Hammes U, Thor K, Suter-Grotemeyer M, Fluckiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) Plant J 40:488–499

    Article  CAS  PubMed  Google Scholar 

  39. Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) Cell 72:705–713

    Article  CAS  PubMed  Google Scholar 

  40. Guo FQ, Wang R, Chen M, Crawford NM (2001) Plant Cell 13:1761–1777

    Article  CAS  PubMed  Google Scholar 

  41. Okamoto M, Vidmar JJ, Glass ADM (2003) Plant Cell Physiol 44:304–317

    Article  CAS  PubMed  Google Scholar 

  42. Mandal A, Sandgren M, Holmström K-O, Gallois P, Palva ET (1995) Plant Mol Biol Rep 13:243–254

    CAS  Google Scholar 

  43. Murashige T, Skoog F (1962) Phys Plantarum 15:473–497

    CAS  Google Scholar 

  44. Southern E (1975) J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  45. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  46. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) Nucleic Acids Res 28:15–18

    Article  CAS  PubMed  Google Scholar 

  47. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  49. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  50. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MDR, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJA, Zdobnov EM (2001) Nucleic Acids Res 29:37–40

    Article  CAS  PubMed  Google Scholar 

  51. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  52. Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In: Glasgow J, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen C (eds) Proc ISMB. AAAI Press, Menlo Park, CA, pp175–182

    Google Scholar 

  53. Käll L, Krogh A, Sonnhammer ELL (2004) J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  54. Jones DT, Taylor WR, Thornton JM (1994) Biochemistry 33:3038–3049

    Article  CAS  PubMed  Google Scholar 

  55. Jones DT (1998) FEBS Lett 423:281–285

    Article  CAS  PubMed  Google Scholar 

  56. von Heijne G (1992) J Mol Biol 225:487–494

    Article  PubMed  Google Scholar 

  57. Nakai K, Horton P (1999) Trends Biochem Sci 24:34–35

    Article  CAS  PubMed  Google Scholar 

  58. Kelley LA, MacCallum RM, Sternberg MJE (2000) J Mol Biol 299:499–520

    Article  CAS  PubMed  Google Scholar 

  59. Jones DT (1997) Curr Opin Struct Biol 7:377–387

    Article  CAS  PubMed  Google Scholar 

  60. Sánchez R, Šali A (1997) Curr Opin Struct Biol 7:206–214

    Article  PubMed  Google Scholar 

  61. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  62. Meredith D, Boyd CAR (2000) Cell Mol Life Sci 57:754–778

    Article  CAS  PubMed  Google Scholar 

  63. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Proteins 12:345–364

    CAS  PubMed  Google Scholar 

  64. Weinglass AB, Kaback HR (2000) Proc Natl Acad Sci USA 97:8938–8943

    Article  CAS  PubMed  Google Scholar 

  65. Seok Y-J, Sun J, Kaback HR, Peterkofsky A (1997) Proc Natl Acad Sci USA 94:13515–13519

    Article  CAS  PubMed  Google Scholar 

  66. Guo F-Q, Young J, Crawford NM (2003) Plant Cell 15:107–117

    Article  CAS  PubMed  Google Scholar 

  67. Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Plant Physiol 129:661–677

    CAS  PubMed  Google Scholar 

  68. Reymond P, Weber H, Damond M, Farmer EE (2000) Plant Cell 12:707–719

    Article  CAS  PubMed  Google Scholar 

  69. Denekamp M, Smeekens SC (2003) Plant Physiol 132:1415–1423

    Article  CAS  PubMed  Google Scholar 

  70. Waterworth WM, West CE, Bray CM (2000) J Exp Bot 51:1201–1209

    Article  CAS  PubMed  Google Scholar 

  71. Truernit E, Schmid J, Epple P, Illig J, Sauer N (1996) Plant Cell 8:2169–2182

    Article  CAS  PubMed  Google Scholar 

  72. Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund RD, Sauer N (2004) Plant Physiol 134:684–693

    Article  CAS  PubMed  Google Scholar 

  73. Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Plant Physiol 132:1950–1960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research grant from Nilsson-Ehle Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Pirhonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, S., Lundh, D., Holmström, KO. et al. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model 11, 226–236 (2005). https://doi.org/10.1007/s00894-005-0257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0257-6

Keywords

Navigation