Journal of Molecular Modeling

, Volume 11, Issue 1, pp 41–47

Direct ab initio dynamics studies of the hydrogen abstraction reactions of hydrogen atom with n-propyl radical and isopropyl radical

Original Paper

DOI: 10.1007/s00894-004-0218-5

Cite this article as:
Li, Q.S., Zhang, Y. & Zhang, S. J Mol Model (2005) 11: 41. doi:10.1007/s00894-004-0218-5

Abstract

The kinetics of the hydrogen abstraction reactions of hydrogen atom with n-propyl radical and isopropyl radical were studied using the direct ab initio dynamics approach. BHandHLYP/cc-pVDZ method was employed to optimize the geometries of stationary points as well as the points on the minimum energy path (MEP). The energies of all the points for the two reactions were further refined at the QCISD(T)/cc-pVTZ level of theory. No barrier was found at the QCISD(T)/cc-pVTZ//BHandHLYP/cc-pVDZ level of theory for both reactions. The forward and reverse rate constants were evaluated with both canonical variational transition state theory (CVT) and microcanonical variational transition state theory (μ VT) in the temperature range of 300–2,500 K. The fitted three-parameter Arrhenius expression of the calculated CVT rate constants at the QCISD(T)/cc-pVTZ//BHandHLYP/cc-pVDZ level of theory are kCVT (n – C3H7)=1.68×10−14T0.84 e(319.5/T) cm3 molecule−1 s−1 and kCVT (iso-C3H7)=4.99×10−14T0.90 e(159.5/T) cm3 molecule−1 s−1 for reactions of n-C3H7 + H and iso-C3H7 + H, respectively, which are in good agreement with available literature data. The variational effects were analysed.

Figure Comparison of the calculated forward rate constants at the QCISD(T)/cc-pVTZ//BHandHLYP/cc-pVDZ level of theory and the available experimental and theoretical data of the reaction vs 1,000/T for the two reactions.

Keywords

Propyl radicalAb initioRate constantVariational transition state theory

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.State Key Laboratory of Prevention and Control of Explosion DisastersBeijing Institute of TechnologyBeijingP.R. China
  2. 2.School of ScienceBeijing Institute of TechnologyBeijingP.R. China
  3. 3.Department of ChemistryShijiazhuang Normal CollegeShijiazhuangP.R. China