Skip to main content
Log in

Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % μ max) observed over <0.1–5 % (w/v) NaCl and pH ranging from 7.4 to 10.2. Isolate BC1 was further characterized by measuring uptake or synthesis of compatible solutes under different growth conditions; in complex medium, uptake and accumulation of external glycine betaine was observed while ectoine was synthesized de novo in salts medium. Transcriptome analysis of isolate BC1 grown on glucose or citrate medium measured differences in glycolysis- and gluconeogenesis-based metabolisms, respectively. The annotated BC1 genome was used to build an in silico, genome-scale stoichiometric metabolic model to study catabolic energy strategies and compatible solute synthesis under gradients of oxygen and nutrient availability. The theoretical analysis identified energy metabolism challenges associated with acclimation to high salinity and high pH. The study documents central metabolism data for the industrially and scientifically important haloalkaliphile genus Halomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aston JE, Peyton BM (2007) Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiol Lett 274:196–203

    Article  CAS  PubMed  Google Scholar 

  • Ates O, Oner ET, Arga KY (2011) Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst Biol 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck A, Hunt KA, Bernstein HC, Carlson RP (2016) Interpreting and designing microbial communities for bioprocess applications, from components to interactions to emergent properties. Biotechnol Biofuel Prod Optim 1:407–432

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Biegel E, Schmidt S, González JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634

    Article  CAS  PubMed  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bott M (1997) Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol 167:78–88

    Article  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282:31147–31155

    Article  CAS  PubMed  Google Scholar 

  • Carlson RP (2007) Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Carlson RP (2009) Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson RP, Taffs RL (2010) Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr Opin Biotechnol 21:670–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson R, Wlaschin A, Srienc F (2005) Kinetic studies and biochemical pathway analysis of anaerobic poly-(R)-3-hydroxybutyric acid synthesis in Escherichia coli. Appl Environ Microbiol 71:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimroth P, Jockel P, Schmid M (2001) Coupling mechanism of the oxaloacetate decarboxylase Na+ pump. BBA Bioenerg 1505:1–14

    Article  CAS  Google Scholar 

  • Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667

    Article  CAS  PubMed  Google Scholar 

  • Folsom JP, Parker AE, Carlson RP (2014) Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J Bacteriol 196:2748–2761

    Article  PubMed  PubMed Central  Google Scholar 

  • Giordano A, Vella FM, Romano I, Gambacorta A (2007) Structural elucidation of a novel phosphoglycolipid isolated from six species of Halomonas. J Lipid Res 48:1825–1831

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379

    Article  CAS  PubMed  Google Scholar 

  • Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol 184:3078–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc B 359:1249–1266

    Article  CAS  Google Scholar 

  • Guzman H, Van-Thuoc D, Martin J, Hatti-Kaul R, Quillaguaman J (2009) A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biotechnol 84:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Halverson LJ, Jones TM, Firestone MK (2000) Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637

    Article  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Article  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DB (1996) Energetic problems of extremely alkaliphilic aerobes. BBA Bioenerg 1275:21–26

    Article  Google Scholar 

  • Kuhlmann SI, Terwisscha van Scheltinga AC, Bienert R, Kunte HJ, Ziegler C (2008) 1.55 Å structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata. Biochemistry 47:9475–9485

    Article  CAS  PubMed  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 317–368

    Google Scholar 

  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. Halophilic Bact 1:109–140

    Google Scholar 

  • Mothes G, Schubert T, Harms H, Maskow T (2008) Biotechnological coproduction of compatible solutes and polyhydroxyalkanoates using the genus Halomonas. Eng Life Sci 8:658–662

    Article  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  CAS  PubMed  Google Scholar 

  • Pade N, Köcher S, Roessler M, Hänelt I, Müller V (2013) Bioenergetics of the moderately halophilic bacterium Halobacillus halophilus: composition and regulation of the respiratory chain. Appl Environ Microbiol 79:3839–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor JM, Bernal V, Salvador M, Argandona M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Canovas M (2013) Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J Biol Chem 288:17769–17781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen J, Forster K, Turina P, Graber P (2012) Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. PNAS 109:11150–11155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182

    Article  Google Scholar 

  • Schuster R, Schuster S (1993) Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed. Bioinformatics 9:79–85

    Article  CAS  Google Scholar 

  • Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332

    Article  CAS  PubMed  Google Scholar 

  • Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581. Environ Microbiol 13:1973–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwood JE, Stagnitti F, Kokkinn MJ, Williams WD (1991) Dissolved-oxygen concentrations in hypersaline waters. Limnol Oceanogr 36:235–250

    Article  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3

    Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Book  Google Scholar 

  • Steigmiller S, Turina P, Graeber P (2008) The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. PNAS 105:3745–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steuber J, Schmid C, Rufibach M, Dimroth P (2000) Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35:428–434

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81:813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhovsky MI, Bogachev AV (2010) Sodium-translocating NADH: quinone oxidoreductase as a redox-driven ion pump. BBA 1797:738–746

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial assistance of Procter and Gamble, Inc. and appreciate the contributions of Adam Kennedy and colleagues at Metabolon, Inc. The authors would also like to thank Ryan Jennings, Ashley Beck and Kristopher Hunt for critical reading of the manuscript and 16S rRNA analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ross P. Carlson or Brent M. Peyton.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, R.P., Oshota, O., Shipman, M. et al. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles 20, 261–274 (2016). https://doi.org/10.1007/s00792-015-0806-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0806-6

Keywords

Navigation