Skip to main content
Log in

Genome-wide comprehensive analysis of transcriptional regulation by ArgR in Thermus thermophilus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

ArgR is known to serve as a repressor/activator of the metabolism of arginine. To elucidate the role of ArgR in the metabolism of Thermus thermophilus cells, comparative genome-wide comprehensive analysis was conducted for wild-type T. thermophilus and its mutant lacking the argR gene. Transcriptome analysis and chromatin affinity precipitation coupled with high-density tiling chip (ChAP-chip) analysis identified 34 genetic loci that are directly regulated by ArgR and indicated that ArgR decreases the expression of arginine biosynthesis and also regulates several other genes involved in amino acid metabolism, including lysine biosynthetic genes, as suggested by our previous study. Among genes whose expression was regulated by ArgR, the largest effect of argR knockout was observed in a putative operon, including genes TTHA0284, TTHA0283, and TTHA0282 involved in arginine biosynthesis. The promoter of this operon, argG, was repressed approximately 21-fold by ArgR. DNase I footprint analysis coupled with electrophoretic mobility shift assay suggested that high arginine-dependent repression was attributed to the fact that the promoter contains three operators for ArgR binding and ArgR is bound to the binding sites cooperatively, possibly forming a DNA loop, in the hexameric form stabilized by arginine binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Caldara M, Charlier D, Cunin R (2006) The arginine regulon of Escherichia coli: whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation. Microbiology 152:3343–3354

    Article  PubMed  CAS  Google Scholar 

  • Charlier D (2004) Arginine regulation in Thermotoga neapolitana and Thermotoga maritima. Biochem Soc Trans 32:310–313

    Article  PubMed  CAS  Google Scholar 

  • Charlier D, Roovers M, Van Vliet F, Boyen A, Cunin R, Nakamura Y, Glansdorff N, Pierard A (1992) Arginine regulon of Escherichia coli K-12. A study of repressor–operator interactions and of in vitro binding affinities versus in vivo repression. J Mol Biol 226:367–386

    Article  PubMed  CAS  Google Scholar 

  • Czaplewski LG, North AK, Smith MC, Baumberg S, Stockley PG (1992) Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol Microbiol 6:267–275

    Article  PubMed  CAS  Google Scholar 

  • Dennis CC, Glykos NM, Parsons MR, Phillips SE (2002) The structure of AhrC, the arginine repressor/activator protein from Bacillus subtilis. Acta Crystallogr D 58:421–430

    Article  Google Scholar 

  • Fujiwara K, Tsubouchi T, Kuzuyama T, Nishiyama M (2006) Involvement of the arginine repressor in lysine biosynthesis of Thermus thermophilus. Microbiology 152:3585–3594

    Article  PubMed  CAS  Google Scholar 

  • Garnett JA, Baumberg S, Stockley PG, Phillips SE (2007) Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine. Acta Crystallogr F63:918–921

    Google Scholar 

  • Harwood CR, Baumberg S (1977) Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol 100:177–188

    Article  PubMed  CAS  Google Scholar 

  • Horie A, Tomita T, Saiki A, Kono H, Taka H, Mineki R, Fujimura T, Nishiyama C, Kuzuyama T, Nishiyama M (2009) Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat Chem Biol 5:673–679

    Article  PubMed  CAS  Google Scholar 

  • Hoseki J, Okamoto A, Takada N, Suenaga A, Futatsugi N, Konagaya A, Taiji M, Yano T, Kuramitsu S, Kagamiyama H (2003) Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution. Biochemistry 42:14469–14475

    Article  PubMed  CAS  Google Scholar 

  • Kiupakis AK, Reitzer L (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kobashi N, Nishiyama M, Tanokura M (1999) Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via α–aminoadipic acid, not via diaminopimeric acid. J Bacteriol 181:1713–1718

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsen R, van Hijum SA, Martinussen J, Kuipers OP, Kok J (2008) Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol 74:4768–4771

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim DB, Oppenheim JD, Eckhardt T, Maas WK (1987) Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor. Proc Natl Acad Sci USA 84:6697–6701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu CD, Houghton JE, Abdelal AT (1992) Characterization of the arginine repressor from Salmonella typhimurium and its interactions with the carAB operator. J Mol Biol 225:11–24

    Article  PubMed  CAS  Google Scholar 

  • Maas WK (1961) Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol 26:183–191

    Article  PubMed  CAS  Google Scholar 

  • Maas WK (1994) The arginine repressor of Escherichia coli. Microbiol Rev 58:631–640

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mandal N, Su W, Haber R, Adhya S, Echols H (1990) DNA looping in cellular repression of transcription of the galactose operon. Genes Dev 4:410–418

    Article  PubMed  CAS  Google Scholar 

  • Miller CM, Baumberg S, Stockley PG (1997) Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol Microbiol 26:37–48

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki J, Kobashi N, Nishiyama M, Yamane H (2001) Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α–aminoadipate. J Bacteriol 183:5067–5073

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyazaki J, Kobashi N, Fujii T, Nishiyama M, Yamane H (2002) Characterization of a lysK gene as an argE homolog in Thermus thermophilus HB27. FEBS Lett 512:269–274

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki J, Kobashi N, Nishiyama M, Yamane H (2003) Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of β-decarboxylating dehydrogenase. J Biol Chem 278:1864–1871

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Miyazaki J, Yamane H, Nishiyama M (2004) α-Aminoadipate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus. Microbiology 150:2327–2334

    Article  PubMed  CAS  Google Scholar 

  • Morin A, Huysveld N, Braun F, Dimova D, Sakanyan V, Charlier D (2003) Hyperthermophilic Thermotoga arginine repressor binding to full-length cognate and heterologous arginine operators and to half-site targets. J Mol Biol 332:537–553

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Takakura Y, Kobayashi H, Hoshino T (2005) In vivo directed evolution for thermostabilization of Escherichia coli hygromycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus. J Biosci Bioeng 100:158–163

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Sakanyan V, Charlier D, Glansdorff N, Van Duyne GD (1999) Structure of the arginine repressor from Bacillus stearothermophilus. Nat Struct Biol 6:427–432

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Nishiyama M, Kobashi N, Kosuge T, Hoshino T, Yamane H (1999) A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res 9:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • North AK, Smith MC, Baumberg S (1989) Nucleotide sequence of a Bacillus subtilis arginine regulatory gene and homology of its product to the Escherichia coli arginine repressor. Gene 80:29–38

    Article  PubMed  CAS  Google Scholar 

  • Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990) The three operators of the lac operon cooperate in repression. EMBO J 9:973–979

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oehler S, Amouyal M, Kolkhof P, von Wilcken-Bergmann B, Müller-Hill B (1994) Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13:3348–3355

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paul L, Mishra PK, Blumenthal RM, Matthews RG (2007) Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinkai A, Kira S, Nakagawa N, Kashihara A, Kuramitsu S, Yokoyama S (2007) Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J Bacteriol 189:3891–3901

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith MC, Czaplewski L, North AK, Baumberg S, Stockley PG (1989) Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli. Mol Microbiol 3:23–28

    Article  PubMed  CAS  Google Scholar 

  • Stirling CJ, Szatmari G, Stewart G, Smith MC, Sherratt DJ (1988) The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7:4389–4395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strassman M, Ceci LN (1964) Enzymatic formation of homocitric acid, an intermediate in lysine biosynthesis. Biochem Biophys Res Commun 14:262–267

    Article  PubMed  CAS  Google Scholar 

  • Strassman M, Ceci LN, Silverman BE (1964) Enzymatic conversion of homoisocitric acid into alpha-ketoadipic acid. Biochem Biophys Res Commun 14:268–271

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi T, Mineki R, Taka H, Kaga N, Murayama K, Nishiyama C, Yamane H, Kuzuyama T, Nishiyama M (2005) Leader peptide-mediated transcriptional attenuation of lysine biosynthetic gene cluster in Thermus thermophilus. J Biol Chem 280:18511–18516

    Article  PubMed  CAS  Google Scholar 

  • Van Duyne GD, Ghosh G, Maas WK, Sigler PB (1996) Structure of the oligomerization and l-arginine binding domain of the arginine repressor of Escherichia coli. J Mol Biol 256:377–391

    Article  PubMed  Google Scholar 

  • Vogel HJ (1964) Distribution of lysine pathway among fungi: evolutionary implications. Am Natl 98:446–455

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. N. Ogasawara and Dr. S. Ishikawa (Nara Institute of Science and Technology) for their useful advice on ChAP-chip analysis. This work was supported by a Grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology Japan, from Nagase Science and Technology Foundation, from the Asahi Glass Foundation, from the Charitable Trust Araki Medical and Biochemistry Memorial Research Promotion Fund, and from Noda Institute for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Iwanaga.

Additional information

Communicated by M. da Costa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwanaga, N., Ide, K., Nagashima, T. et al. Genome-wide comprehensive analysis of transcriptional regulation by ArgR in Thermus thermophilus . Extremophiles 18, 995–1008 (2014). https://doi.org/10.1007/s00792-014-0669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0669-2

Keywords

Navigation