1.
Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Proceedings of the 5th Latin American Symposium on Theoretical Informatics, pp. 598–612 (2002)
2.
Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIGMOD Conference, pp. 781–792 (2011)
3.
Angel, A., Koudas, N., Sarkas, N., Srivastava, D.: What’s on the grapevine? In: Proceedings of the SIGMOD Conference, pp. 1047–1050 (2009)
4.
Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB 5(6), 574–585 (2012)
5.
Bansal, N., Chiang, F., Koudas, N., Tompa, F.W.: Seeking stable clusters in the blogosphere. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), pp. 806–817 (2007)
6.
Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 623–632 (2002)
7.
Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. J. ACM 57(2), 7:1–7:30 (2010)
8.
Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the ACM KDD Conference, pp. 554–560 (2006)
9.
Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), pp. 626–635 (1997)
10.
Cortes, C., Pregibon, D., Volinsky, C.: Computational methods for dynamic graphs. J. Comput. Graph. Stat. (2003)
11.
Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J. (ed.) Algorithms and Theory of Computation Handbook, chap. 8. CRC Press (1999). URL:
http://www.info.uniroma2.it/~italiano/Papers/dyn-survey.ps.Z
12.
Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining in a data warehousing environment. In: Proceedings of the 24rd International Conference on Very Large Data, Bases, pp. 323–333 (1998)
13.
Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–160 (2000)
14.
Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB), pp. 721–732 (2005)
15.
Goldberg, A.: Finding a maximum density subgraph. Technical report, University of California at Berkeley (1984). URL:
http://nma.berkeley.edu/ark:/28722/bk000570k8g
16.
Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: theory and practice. IEEE Trans. Knowl. Data Eng.
15, 515–528 (2003)
CrossRef17.
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2000)
18.
Hartline, J., Sharp, A.: An incremental model for combinatorial maximization problems. In: Proceedings of the 5th International Workshop on Experimental Algorithms, pp. 36–48 (2006)
19.
Hartline, J., Sharp, A.: Incremental flow. Networks
50(1), 77–85 (2007)
CrossRefMATHMathSciNet20.
Hill, S., Agarwal, D.K., Bell, R., Volinsky, C.: Building an effective representation for dynamic networks. J. Comput. Graph. Stat.
15(3), 584–608 (2006)
CrossRefMathSciNet21.
Khuller, S., Saha, B.: On finding dense subgraphs. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP), pp. 597–608 (2009)
22.
Kim, M.S., Han, J.: Chronicle: a two-stage density-based clustering algorithm for dynamic networks. In: Discovery Science, pp. 152–167 (2009)
23.
Kumar, S., Gupta, P.: An incremental algorithm for the maximum flow problem. J. Math. Model. Algorithm.
2(1), 1–16 (2003)
CrossRefMATHMathSciNet24.
Lawler, E.L.: A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Manag. Sci.
18(7), 401–405 (1972)
CrossRefMATHMathSciNet25.
Long, J., Hartman, C.: ODES: an overlapping dense sub-graph algorithm. Bioinformatics 26(21), 2788–2789 (2010)
26.
Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: SIGMOD Conference, pp. 1155–1158 (2010)
27.
Pardalos, P.M., Xue, J.: The maximum clique problem. J. Glob. Optim.
4, 301–328 (1994)
CrossRefMATHMathSciNet28.
Sarkas, N., Angel, A., Koudas, N., Srivastava, D.: Efficient identification of coupled entities in document collections. In: Proceedings of ICDE Conference, pp. 769–772 (2010)
29.
Stix, V.: Finding all maximal cliques in dynamic graphs. Comput. Optim. Appl.
27, 173–186 (2004)
CrossRefMATHMathSciNet30.
Uno, T.: An efficient algorithm for solving pseudo clique enumeration problem. Algorithmica
56, 3–16 (2010)
CrossRefMATHMathSciNet31.
Wang, N., Parthasarathy, S., Tan, K.L., Tung, A.K.H.: Csv: visualizing and mining cohesive subgraphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 445–458 (2008)
32.
Yang, D., Rundensteiner, E.A., Ward, M.O.: Neighbor-based pattern detection for windows over streaming data. In: Proceedings of the EDBT Conference, pp. 529–540 (2009)