, Volume 8, Issue 2, pp 192-197

Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


 Kyphoplasty and vertebroplasty with polymethylmethacrylate (PMMA) have been used for the treatment of osteoporotic vertebral compression fractures. We performed kyphoplasty and vertebroplasty with α-tricalcium phosphate cement (CPC) and PMMA to compare the biomechanical properties. Thirty osteoporotic vertebrae were harvested from nine embalmed cadavers. We randomized the vertebrae into four treatment groups: (1) kyphoplasty with CPC; (2) kyphoplasty with PMMA; (3) vertebroplasty with CPC; and (4) vertebroplasty with PMMA. Prior to injecting the cement, all vertebrae were compressed to determine their initial strength and stiffness. They were then recompressed to determine their augmented strength and stiffness. Although the augmented strength was greater than the initial strength in all groups, there was no significant difference between the two bone cements for either kyphoplasty or vertebroplasty. The augmented stiffness was significantly less than the initial stiffness in the kyphoplasty groups, but the difference between the two cements did not reach significance. In the vertebroplasty groups, the augmented stiffness was not significantly different from the initial stiffness. There was no significant difference between the two bone cements for either procedure when cement volume and restoration of anterior height were assessed. We concluded that kyphoplasty and vertebroplasty with CPC were viable treatment alternatives to PMMA for osteoporotic vertebral compression fractures.

Received: July 18, 2002 / Accepted: November 6, 2002
Offprint requests to: S. Tomita