Skip to main content

Advertisement

Log in

Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1

JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s−1) accounts for less than 1 % of the wild-type activity (k cat = 1100 ± 30 s−1) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s−1, respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s−1 and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys104-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kovacs JA (2004) Chem Rev 104:825–848

    Article  CAS  PubMed  Google Scholar 

  2. Yamada H, Kobayashi M (1996) Biosci Biotechnol Biochem 60:1391–1400

    Article  CAS  PubMed  Google Scholar 

  3. Brady D, Beeton A, Zeevaart J, Kgaje C, Rantwijk F, Sheldon RA (2004) Appl Microbiol Biotechnol 64:76–85

    Article  CAS  PubMed  Google Scholar 

  4. Wang M-X (2005) Top Catal 35:117–130

    Article  Google Scholar 

  5. Velankar H, Clarke KG, Preez RD, Cowan DA, Burton SG (2010) Trends Biotechnol 28:561–569

    Article  CAS  PubMed  Google Scholar 

  6. Prasad S, Bhalla TC (2010) Biotechnol Adv 28:725–741

    Article  CAS  PubMed  Google Scholar 

  7. Harrop TC, Mascharak PK (2004) Acc Chem Res 37:253–260

    Article  CAS  PubMed  Google Scholar 

  8. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Nat Struct Mol Biol 5:347–351

    Article  CAS  Google Scholar 

  9. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Biochem Biophys Res Commun 288:1169–1174

    Article  CAS  PubMed  Google Scholar 

  10. Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K (2003) Biochem Biophys Res Commun 312:340–345

    Article  CAS  PubMed  Google Scholar 

  11. Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Structure 15:691–699

    Article  Google Scholar 

  12. Martinez S, Wu R, Sanishvili R, Liu D, Holz R (2014) J Am Chem Soc 136:1186–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hopmann KH (2014) Inorg Chem 53:2760–2762

    Article  CAS  PubMed  Google Scholar 

  14. Kayanuma M, Hanaoka K, Shoji M, Shigeta Y (2015) Chem Phys Lett 623:8–13

    Article  CAS  Google Scholar 

  15. Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T (1991) J Bacteriol 173:2465–2472

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Hashimoto Y, Nishiyamaa M, Horinouchia S, Beppuab T (1994) Biosci Biotechnol Biochem 58:1859–1869

    Article  CAS  PubMed  Google Scholar 

  17. Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) J Biochem 125:696–704

    Article  CAS  PubMed  Google Scholar 

  18. Petrillo KL, Wu S, Hann EC, Cooling FB, Ben-Bassat A, Gavagan JE, DiCosimo R, Payne MS (2005) Appl Microbiol Biotechnol 67:664–670

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, Fallon RD, Payne MS (1997) Appl Microbiol Biotechnol 48:704–708

    Article  CAS  PubMed  Google Scholar 

  20. Kuhn ML, Martinez S, Gumataotao N, Bornscheuer U, Liu D, Holz RC (2012) Biochem Biophys Res Commun 424:365–370

    Article  CAS  PubMed  Google Scholar 

  21. Z. Otwinowski and W. Minor (1997) In: Charles W. Carter, Jr. (ed) Methods enzymol. Academic Press, pp. 307–326

  22. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. N. Collaborative Computational Project (1994) Acta Crystallogr Sect D Biol Crystallogr 50:760–763

  24. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D: Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  25. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D: Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  26. Adams PD, Grosse-Kunstleve RW, Hung L-W, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) Acta Crystallogr Sect D: Biol Crystallogr 58:1948–1954

    Article  Google Scholar 

  27. Murakami T, Nojiri M, Nakayama H, Dohmae N, Takio K, Odaka M, Endo I, Nagamune T, Yohda M (2000) Protein Sci 9:1024–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Arakawa T, Kawano Y, Katayama Y, Nakayama H, Dohmae N, Yohda M, Odaka M (2009) J Am Chem Soc 131:14838–14843

    Article  CAS  PubMed  Google Scholar 

  29. Piersma SR, Nojiri M, Tsujimura M, Noguchi T, Odaka M, Yohda M, Inoue Y, Endo I (2000) J Inorg Biochem 80:283–288

    Article  CAS  PubMed  Google Scholar 

  30. Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M (2001) J Inorg Biochem 83:247–253

    Article  CAS  PubMed  Google Scholar 

  31. Yamanaka Y, Arakawa T, Watanabe T, Namima S, Sato M, Hori S, Ohtaki A, Noguchi K, Katayama Y, Yohda M, Odaka M (2013) J Biosci Bioeng 116:22–27

    Article  CAS  PubMed  Google Scholar 

  32. Nelp MT, Astashkin AV, Breci LA, McCarty RM, Bandarian V (2014) Biochemistry 53:3990–3994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dey A, Chow M, Taniguchi K, Lugo-Mas P, Davin S, Maeda M, Kovacs JA, Odaka M, Hodgson KO, Hedman B, Solomon EI (2006) J Am Chem Soc 128:533–541

    Article  CAS  PubMed  Google Scholar 

  34. Odaka M, Noguchi T, Nagashima S, Yohda M, Yabuki S, Hoshino M, Inoue Y, Endo I (1996) Biochem Biophys Res Commun 221:146–150

    Article  CAS  PubMed  Google Scholar 

  35. Tsujimura M, Dohmae N, Odaka M, Chijimatsu M, Takio K, Yohda M, Hoshino M, Nagashima S, Endo I (1997) J Biol Chem 272:29454–29459

    Article  CAS  PubMed  Google Scholar 

  36. Yamanaka Y, Hashimoto K, Ohtaki A, Noguchi K, Yohda M, Odaka M (2010) J Biol Inorg Chem 15:655–665

    Article  CAS  PubMed  Google Scholar 

  37. Tsujimura M, Odaka M, Nakayama H, Dohmae N, Koshino H, Asami T, Hoshino M, Takio K, Yoshida S, Maeda M, Endo I (2003) J Am Chem Soc 125:11532–11538

    Article  CAS  PubMed  Google Scholar 

  38. Sugiura Y, Kuwahara J, Nagasawa T, Yamada H (1987) J Am Chem Soc 109:5848–5850

    Article  CAS  Google Scholar 

  39. Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T (2004) Eur J Biochem 271:429–438

    Article  CAS  PubMed  Google Scholar 

  40. Gumataotao N, Kuhn ML, Hajnas N, Holz RC (2013) J Biol Chem 288:15532–15536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lugo-Mas P, Dey A, Xu L, Davin SD, Benedict J, Kaminsky W, Hodgson KO, Hedman B, Solomon EI, Kovacs JA (2006) J Am Chem Soc 128:11211–11221

    Article  CAS  PubMed  Google Scholar 

  42. Kennepohl P, Neese F, Schweitzer D, Jackson HL, Kovacs JA, Solomon EI (2005) Inorg Chem 44:1826–1836

    Article  CAS  PubMed  Google Scholar 

  43. Brodkin HR, Novak WRP, Milne AC, D’Aquino JA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Ondrechen MJ, Ringe D (2011) Biochemistry 50:4923–4935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (CHE-1412443, RCH and CHE-1308672, DL). HC gratefully acknowledges the ACS Project SEED for funding a summer internship. GM/CA @ APS has been funded in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dali Liu or Richard C. Holz.

Additional information

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at: http://proteopedia.org/w/Journal:JBIC:32

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOCX 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, S., Wu, R., Krzywda, K. et al. Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. J Biol Inorg Chem 20, 885–894 (2015). https://doi.org/10.1007/s00775-015-1273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1273-3

Keywords

Navigation