Skip to main content
Log in

EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Methionine motifs are methionine-rich metal-binding segments found in many human, yeast, and bacterial proteins involved in the transportation of copper ion to other cellular pathways, and in protecting copper from oxidation. Methionine motifs are found to bind Ag(I) and Cu(I) ions. Proteins or peptides that can bind different metal ions should have the ability to differentiate between them, to be able to shuttle them to various pathways in the cell. This study utilizes electron paramagnetic resonance spectroscopy together with circular dichroism and nuclear magnetic resonance to probe structural changes in the methionine segment upon coordinating Cu(I) and Ag(I) metal ions. The data collected here indicate that methionine segments experience structural changes while coordinating Cu(I) and Ag(I), however, the differences between the coordination of Cu(I) vs. Ag(I) to the methionine segment are mild. Since Cu(I) and Ag(I) metal ions are pretty similar in their nature and charge, the minor structural changes reported here are significant towards the understanding of the differences in the transport mechanism of these two metal ions in prokaryotic and eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

CW:

Continuous wave

DEER:

Double electron–electron resonance

EPR:

Electron paramagnetic resonance

Met:

Methionine

5-MSL:

3-Maleimido-proxyl

MTSSL:

(1-Oxyl-2,2,5,5-tetramethyl-2,5-pyrroline-3-methyl) methanethiosulfonate

NMR:

Nuclear magnetic resonance

SDSL:

Site-directed spin-labeling

References

  1. Fabisiak JP, Tyurin VA, Tyurina YY, Borisenko GG, Korotaeve A, Pitt BR, Lazo JS, Kagan VE (1999) Arch Biochem Biophys 363:171–181

    Article  CAS  PubMed  Google Scholar 

  2. Haas KL, Putterman AB, White DR, Thiele DJ, Franz KJ (2011) J Am Chem Soc 133:4427–4437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jiang J, Nadas IA, Alison Kim M, Franz KJ (2005) Inorg Chem 44:9787–9794

    Article  CAS  PubMed  Google Scholar 

  4. Rubino JT, Riggs-Gelasco P, Franz KJ (2010) J Biol Inorg Chem 15:1033–1049

    Article  CAS  PubMed  Google Scholar 

  5. Aller SG, Unger VM (2006) Proc Natl Acad Sci 103:3627–3632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Proc Natl Acad Sci 106:4237–4242

    Article  PubMed Central  PubMed  Google Scholar 

  7. De Feo CJ, Aller SG, Unger VM (2007) Biometals 20:705–716

    Article  CAS  PubMed  Google Scholar 

  8. Maryon EB, Molloy SA, Ivy K, Yu H, Kaplan JH (2013) J Biol Chem 288:18035–18046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Xue Y, Davis AV, Balakrishan G, Stasser JP, Staehlin BM, Focia P, Spiro TG, Penner-Hahn JE, O’Halloran TV (2008) Nat Chem Biol 4:107–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Huffman DL, Huyett J, Wayne Outten F, Doan PE, Finney LA, Hoffmann BM, O’Halloran TV (2002) Biochem 41:10046–10055

    Article  CAS  Google Scholar 

  11. Skvortsov AN, Zatulovskiy EA, Puchkova LV (2012) Mol Biol 46:335–347

    Article  CAS  Google Scholar 

  12. Cason JS, Lowbury EJ (1968) Lancet 1:651–654

    Article  CAS  PubMed  Google Scholar 

  13. Drake PL, Hazelwood KJ (2005) Ann Occup Hyg 49:575–585

    Article  CAS  PubMed  Google Scholar 

  14. Modak SM, Sampath L, Fox CL Jr (1988) J Burn Care Rehabil 9:359–363

    Article  CAS  PubMed  Google Scholar 

  15. Fung MC, Bowen DL (1996) J Toxicol Clin Toxicol 34:119–126

    Article  CAS  PubMed  Google Scholar 

  16. Gulbranson SH, Hud JA, Hansen RC (2000) Cutis 66:373–374

    CAS  PubMed  Google Scholar 

  17. Shelley WB, Shelley ED, Burmeister V (1987) J Am Acad Deratol 16:211–217

    Article  CAS  Google Scholar 

  18. Bertinato J, Cheung L, Hoque R, Plouffe LJ (2010) J Trace Elem Med Biol 24:178–184

    Article  CAS  PubMed  Google Scholar 

  19. Ibricevic A, Brody SL, Youngs WJ, Cannon CL (2010) Toxic Appl Pharm 243:315–322

    Article  CAS  Google Scholar 

  20. Lee J, Pena MMO, Nose Y, Thiele DJ (2002) J Biol Chem 277:4380–4387

    Article  CAS  PubMed  Google Scholar 

  21. Wernimont AK, Huffman DL, Finney LA, Demeler B, O’Halloran TV, Rosenzweig AC (2003) J Biol Inorg Chem 8:185–194

    Article  CAS  PubMed  Google Scholar 

  22. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) J Magn Reson 191:202–218

    Article  CAS  PubMed  Google Scholar 

  23. Banham JE, Jeschke G, Timmel CR (2007) Mol Phys 105:2041–2047

    Article  CAS  Google Scholar 

  24. Bennati M, Robblee JH, Mugnaini V, Stubbe J, Freed JH, Borbat P (2005) J Am Chem Soc 127:15014–15015

    Article  CAS  PubMed  Google Scholar 

  25. Borbat PP, Surendhran K, Bortolus M, Zou P, Freed JH, Mchaourab HS (2007) PLoS Biol 5:2211–2219

    Article  CAS  Google Scholar 

  26. Hemminga MA, Berliner LJ (2007) ESR Spectroscopy in Membrane Biophysics. Springer Science + Business Media, LLC

    Google Scholar 

  27. Hilger D, Jung H, Padan E, Wegener C, Vogel KP, Steinhoff HJ, Jeschke G (2005) Biophys J 89:1328–1338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Jeschke G, Polyhach Y (2007) Phys Chem Chem Phys 9:1895–1910

    Article  CAS  PubMed  Google Scholar 

  29. Raitsimring AM, Gunanathan C, Potapov A, Efremenko I, Martin JML, Milstein D, Goldfarb D (2007) J Am Chem Soc 129:14138–14139

    Article  CAS  PubMed  Google Scholar 

  30. Sicoli G, Mathis G, Delalande O, Boulard Y, Gasparutto D, Garnbarelli S (2008) Angew Chem Int Ed 47:735–737

    Article  CAS  Google Scholar 

  31. Xu Q, Ellena JF, Kim M, Cafiso DS (2006) Biochem 45:10847–10854

    Article  CAS  Google Scholar 

  32. Sahu ID, Kroncke BM, Zhang R, Dunagan MM, Smith HJ, Craig A, McCarrick RM, Sanders CR, Lorigan GA (2014) Biochem 53:6391–6401

    Article  Google Scholar 

  33. Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood PTR Prentice Hall, England

    Google Scholar 

  34. Weil JA, Bolton JR (2007) Electron paramagnetic resonance. Wiley, Hoboken

    Google Scholar 

  35. Schweiger A, Jeschke G (2001) Principles of electron paramgnetic resonance. University Press, Oxford

    Google Scholar 

  36. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) J Magn Reson 142:331–340

    Article  CAS  PubMed  Google Scholar 

  37. Milov AD, Tsvetkov YD (1997) Appl Magn Reson 12:495–504

    Article  CAS  Google Scholar 

  38. Joseph B, Morkhov VM, Yulikov M, Jeschke G, Bordignon E (2014) J Biol Chem 289:3176–3185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sahu ID, McCarrick RM, Troxel KR, Zhang R, Smith HJ, Dunagan MM, Swartz MS, Rajan PV, Kroncke BM, Sanders CR, Lorigan GA (2013) Biochem 52:6627–6632

    Article  CAS  Google Scholar 

  40. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Curr Opin Struct Biol 8:649–656

    Article  CAS  PubMed  Google Scholar 

  41. Columbus L, Hubbell WL (2002) Trend Biochem Sci 27:288–295

    Article  CAS  PubMed  Google Scholar 

  42. Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA (1996) Structure 4:779–783

    Article  CAS  PubMed  Google Scholar 

  43. Shenberger Y, Yarmiayev V, Ruthstein S (2013) Mol Phys 111:2980–2991

    Article  CAS  Google Scholar 

  44. Jeschke G (2007) Bio Magn Res 27:287–288

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Israel Science Foundation, Grant No. 280/12. The Elexsys E580 Bruker EPR spectrometer was partially supported by the Israel Science Foundation, Grant No. 564/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Ruthstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenberger, Y., Gottlieb, H.E. & Ruthstein, S. EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment. J Biol Inorg Chem 20, 719–727 (2015). https://doi.org/10.1007/s00775-015-1259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1259-1

Keywords

Navigation