Skip to main content
Log in

Carbon monoxide binding properties of domain-swapped dimeric myoglobin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Myoglobin (Mb) is a monomeric oxygen storage hemoprotein, and has been shown to form a domain-swapped dimer. In this study, monomeric and dimeric carbon monoxide (CO)-bound Mb (MbCO) exhibited similar absorption spectra. The CO stretching frequencies of MbCO were observed at 1,932 and 1,944 cm−1 for both monomeric and dimeric MbCO. The resonance Raman (RR) bands for the stretching between the heme iron and axial ligands were observed at the same frequencies for the monomer and dimer of deoxygenated Mb (deoxyMb) and MbCO, respectively (ν Fe–His, 220 cm−1; ν Fe–C, 507 cm−1), showing that the Fe–His bond strength of deoxyMb and the Fe–CO bond strength of MbCO did not change by the dimerization. Time-resolved RR measurements showed that the dynamics of the structural changes at the heme active site after CO photo-dissociation of MbCO was similar between monomeric and dimeric Mb [monomer, (5.2 ± 1.8) × 106 s−1; dimer, (6.2 ± 1.1) × 106 s−1 at room temperature]. These results show that the heme coordination structure, the protein environment around the bound CO, and the protein relaxation character are similar between monomeric and dimeric MbCO. Although the active site structure was similar between the monomer and dimer, the CO binding rate constant of dimeric Mb [(1.01 ± 0.03) × 106 M−1 s−1 at 20 °C] was about twice larger than that of the monomer [(0.52 ± 0.02) × 106 M−1 s−1 at 20 °C], presumably due to the expansion of the channel between the Xe3 cavity and the solvent by the dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland Publishing, Amsterdam

    Google Scholar 

  2. Kitagawa T, Ozaki Y (1987) Struct Bond 64:71–114

    Article  CAS  Google Scholar 

  3. Springer BA, Sligar SG, Olson JS, Phillips GN (1994) Chem Rev 94:699–714

    Article  CAS  Google Scholar 

  4. Brunori M, Gibson QH (2001) EMBO Rep 2:674–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sono M, Andersson LA, Dawson JH (1982) J Biol Chem 257:8308–8320

    CAS  PubMed  Google Scholar 

  6. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Nature 185:422–427

    Article  CAS  PubMed  Google Scholar 

  7. Phillips SE (1978) Nature 273:247–248

    Article  CAS  PubMed  Google Scholar 

  8. Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S (2012) Dalton Trans 41:11378–11385

    Article  CAS  PubMed  Google Scholar 

  9. Bennett MJ, Choe S, Eisenberg D (1994) Proc Natl Acad Sci USA 91:3127–3131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liu Y, Hart PJ, Schlunegger MP, Eisenberg D (1998) Proc Natl Acad Sci USA 95:3437–3442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Liu Y, Eisenberg D (2002) Protein Sci 11:1285–1299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzola F, Bourgeois D, Fulop V, Hajdu J, Brunori M, Tegoni M, Cambillau C (1997) Structure 5:1157–1171

    Article  CAS  PubMed  Google Scholar 

  13. Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ, Getzoff ED (1999) EMBO J 18:6271–6281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Czjzek M, Letoffe S, Wandersman C, Delepierre M, Lecroisey A, Izadi-Pruneyre N (2007) J Mol Biol 365:1176–1186

    Article  CAS  PubMed  Google Scholar 

  15. Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y (2010) Proc Natl Acad Sci USA 107:12854–12859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hayashi Y, Nagao S, Osuka H, Komori H, Higuchi Y, Hirota S (2012) Biochemistry 51:8608–8616

    Article  CAS  PubMed  Google Scholar 

  17. Parui PP, Deshpande MS, Nagao S, Kamikubo H, Komori H, Higuchi Y, Kataoka M, Hirota S (2013) Biochemistry 52:8732–8744

    Article  CAS  PubMed  Google Scholar 

  18. Olson JS (1981) Methods Enzymol 76:631–651

    Article  CAS  PubMed  Google Scholar 

  19. Rohlfs RJ, Mathews AJ, Carver TE, Olson JS, Springer BA, Egeberg KD, Sligar SG (1990) J Biol Chem 265:3168–3176

    CAS  PubMed  Google Scholar 

  20. Li T, Quillin ML, Phillips GN Jr, Olson JS (1994) Biochemistry 33:1433–1446

    Article  CAS  PubMed  Google Scholar 

  21. Huang X, Boxer SG (1994) Nat Struct Biol 1:226–229

    Article  CAS  PubMed  Google Scholar 

  22. Olson JS, Phillips GN (1996) J Biol Chem 271:17593–17596

    Article  CAS  PubMed  Google Scholar 

  23. Schlichting I, Berendzen J, Phillips GN Jr, Sweet RM (1994) Nature 371:808–812

    Article  CAS  PubMed  Google Scholar 

  24. Teng TY, Srajer V, Moffat K (1994) Nat Struct Biol 1:701–705

    Article  CAS  PubMed  Google Scholar 

  25. Hartmann H, Zinser S, Komninos P, Schneider RT, Nienhaus GU, Parak F (1996) Proc Natl Acad Sci USA 93:7013–7016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Srajer V, Teng T, Ursby T, Pradervand C, Ren Z, Adachi S, Schildkamp W, Bourgeois D, Wulff M, Moffat K (1996) Science 274:1726–1729

    Article  CAS  PubMed  Google Scholar 

  27. Chu K, Vojtchovsky J, McMahon BH, Sweet RM, Berendzen J, Schlichting I (2000) Nature 403:921–923

    Article  CAS  PubMed  Google Scholar 

  28. Srajer V, Ren Z, Teng TY, Schmidt M, Ursby T, Bourgeois D, Pradervand C, Schildkamp W, Wulff M, Moffat K (2001) Biochemistry 40:13802–13815

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt M, Nienhaus K, Pahl R, Krasselt A, Anderson S, Parak F, Nienhaus GU, Srajer V (2005) Proc Natl Acad Sci USA 102:11704–11709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tomita A, Sato T, Ichiyanagi K, Nozawa S, Ichikawa H, Chollet M, Kawai F, Park SY, Tsuduki T, Yamato T, Koshihara SY, Adachi S (2009) Proc Natl Acad Sci USA 106:2612–2616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tomita A, Kreutzer U, Adachi S, Koshihara SY, Jue T (2010) J Exp Biol 213:2748–2754

    Article  CAS  PubMed  Google Scholar 

  32. Dadusc G, Ogilvie JP, Schulenberg P, Marvet U, Miller RJ (2001) Proc Natl Acad Sci USA 98:6110–6115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ishikawa H, Uchida T, Takahashi S, Ishimori K, Morishima I (2001) Biophys J 80:1507–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sakakura M, Yamaguchi S, Hirota N, Terazima M (2001) J Am Chem Soc 123:4286–4294

    Article  CAS  PubMed  Google Scholar 

  35. Nishihara Y, Sakakura M, Kimura Y, Terazima M (2004) J Am Chem Soc 126:11877–11888

    Article  CAS  PubMed  Google Scholar 

  36. Alben JO, Caughey WS (1968) Biochemistry 7:175–183

    Article  CAS  PubMed  Google Scholar 

  37. Coughey WS, Alben JO, McCoy S, Boyer SH, Charache S, Hathaway P (1969) Biochemistry 8:59–62

    Article  CAS  PubMed  Google Scholar 

  38. Bangcharoenpaurpong O, Schomacker KT, Champion PM (1984) J Am Chem Soc 106:5688–5698

    Article  CAS  Google Scholar 

  39. Spiro TG, Czernuszewicz RS, Li XY (1990) Coordin Chem Rev 100:541–571

    Article  CAS  Google Scholar 

  40. Hu SZ, Smith KM, Spiro TG (1996) J Am Chem Soc 118:12638–12646

    Article  CAS  Google Scholar 

  41. Unno M, Christian JF, Olson JS, Sage JT, Champion PM (1998) J Am Chem Soc 120:2670–2671

    Article  CAS  Google Scholar 

  42. Yeh SR, Han SW, Rousseau DL (1998) Acc Chem Res 31:727–736

    Article  CAS  Google Scholar 

  43. Mizutani Y, Kitagawa T (2001) J Phys Chem B 105:10992–10999

    Article  CAS  Google Scholar 

  44. Couture M, Burmester T, Hankeln T, Rousseau DL (2001) J Biol Chem 276:36377–36382

    Article  CAS  PubMed  Google Scholar 

  45. Yamada K, Ishikawa H, Mizutani Y (2012) J Phys Chem B 116:1992–1998

    Article  CAS  PubMed  Google Scholar 

  46. Murakawa Y, Nagai M, Mizutani Y (2012) J Am Chem Soc 134:1434–1437

    Article  CAS  PubMed  Google Scholar 

  47. Henry ER, Sommer JH, Hofrichter J, Eaton WA (1983) J Mol Biol 166:443–451

    Article  CAS  PubMed  Google Scholar 

  48. Carver TE, Rohlfs RJ, Olson JS, Gibson QH, Blackmore RS, Springer BA, Sligar SG (1990) J Biol Chem 265:20007–20020

    CAS  PubMed  Google Scholar 

  49. Gibson QH (1956) J Physiol 134:112–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Findsen EW, Scott TW, Chance MR, Friedman JM, Ondrias MR (1985) J Am Chem Soc 107:3355–3357

    Article  CAS  Google Scholar 

  51. Franzen S, Bohn B, Poyart C, Martin JL (1995) Biochemistry 34:1224–1237

    Article  CAS  PubMed  Google Scholar 

  52. Mizutani Y, Kitagawa T (1997) Science 278:443–446

    Article  CAS  PubMed  Google Scholar 

  53. Peterson ES, Friedman JM, Chien EY, Sligar SG (1998) Biochemistry 37:12301–12319

    Article  CAS  PubMed  Google Scholar 

  54. Bolognesi M, Cannillo E, Ascenzi P, Giacometti GM, Merli A, Brunori M (1982) J Mol Biol 158:305–315

    Article  CAS  PubMed  Google Scholar 

  55. Ringe D, Petsko GA, Kerr DE, Ortiz de Montellano PR (1984) Biochemistry 23:2–4

    Article  CAS  PubMed  Google Scholar 

  56. Blouin GC, Olson JS (2010) Biochemistry 49:4968–4976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Smith RD, Blouin GC, Johnson KA, Phillips GN Jr, Olson JS (2010) Biochemistry 49:4977–4986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Scott EE, Gibson QH, Olson JS (2001) J Biol Chem 276:5177–5188

    Article  CAS  PubMed  Google Scholar 

  59. Olson JS, Soman J, Phillips GN (2007) IUBMB Life 59:552–562

    Article  CAS  PubMed  Google Scholar 

  60. Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS (2012) J Biol Chem 287:33163–33178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Elber R, Karplus M (1990) J Am Chem Soc 112:9161–9175

    Article  CAS  Google Scholar 

  62. Mizutani Y, Kitagawa T (2001) Chem Rec 1:258–275

    Article  CAS  PubMed  Google Scholar 

  63. Kitagawa T, Nagai K, Tsubaki M (1979) FEBS Lett 104:376–378

    Article  CAS  PubMed  Google Scholar 

  64. Stein P, Mitchell M, Spiro TG (1980) J Am Chem Soc 102:7795–7797

    Article  CAS  Google Scholar 

  65. Perutz MF, Wilkinson AJ, Paoli M, Dodson GG (1998) Annu Rev Biophys Biomol Struct 27:1–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We give thanks to Mr. Leigh McDowell for his advice during manuscript preparation. This work was partially supported by Grants-in-Aid for Scientific Research from JSPS (Young Scientists B, No. 24750163 (S.N.) and Category B, No. 26288080 (S.H.)). This study was also supported by the Green Photonics Project at NAIST sponsored by MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Hirota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, S., Ishikawa, H., Yamada, T. et al. Carbon monoxide binding properties of domain-swapped dimeric myoglobin. J Biol Inorg Chem 20, 523–530 (2015). https://doi.org/10.1007/s00775-014-1236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1236-0

Keywords

Navigation