JBIC Journal of Biological Inorganic Chemistry

, Volume 17, Issue 8, pp 1151–1158

Multicopper oxidase involvement in both Mn(II) and Mn(III) oxidation during bacterial formation of MnO2

  • Alexandra V. Soldatova
  • Cristina Butterfield
  • Oyeyemi F. Oyerinde
  • Bradley M. Tebo
  • Thomas G. Spiro
Original Paper

DOI: 10.1007/s00775-012-0928-6

Cite this article as:
Soldatova, A.V., Butterfield, C., Oyerinde, O.F. et al. J Biol Inorg Chem (2012) 17: 1151. doi:10.1007/s00775-012-0928-6

Abstract

Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation.

Keywords

Manganese oxidation Biogenic Mn oxides Multicopper oxidase Bacillus sp. SG-1 

Abbreviations

HEPES

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

MCO

Multicopper oxidase

PP

Pyrophosphate

TEM

Transmission electron microscopy

Copyright information

© SBIC 2012

Authors and Affiliations

  • Alexandra V. Soldatova
    • 1
  • Cristina Butterfield
    • 2
  • Oyeyemi F. Oyerinde
    • 1
    • 3
  • Bradley M. Tebo
    • 2
  • Thomas G. Spiro
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA
  2. 2.Division of Environmental and Biomolecular SystemsOregon Health and Science UniversityBeavertonUSA
  3. 3.Celanese ChemicalsPasadenaUSA

Personalised recommendations