Skip to main content

Advertisement

Log in

Potent in vitro anti-Trypanosoma cruzi activity of pyridine-2-thiol N-oxide metal complexes having an inhibitory effect on parasite-specific fumarate reductase

JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the search for new therapeutic tools against Chagas disease (American trypanosomiasis) palladium and platinum complexes of the bioactive ligand pyridine-2-thiol N-oxide were exhaustively characterized and evaluated in vitro. Both complexes showed high in vitro growth inhibition activity (IC50 values in the nanomolar range) against Trypanosoma cruzi, the causative agent of the disease. They were 39–115 times more active than the antitrypanosomal drug Nifurtimox. The palladium complex showed an approximately threefold enhancement of the activity compared with the parent compound. In addition, owing to their low unspecific cytotoxicity on mammalian cells, the complexes showed a highly selective antiparasite activity. To get an insight into the mechanism of action of these compounds, DNA, redox metabolism (intraparasite free-radical production) and two parasite-specific enzymes absent in the host, namely, trypanothione reductase and NADH-fumarate reductase, were evaluated as potential parasite targets. Additionally, the effect of metal coordination on the free radical scavenger capacity previously reported for the free ligand was studied. All the data strongly suggest that trypanocidal action of the complexes could mainly rely on the inhibition of the parasite-specific enzyme NADH-fumarate reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. http://www.who.int./ctd/chagas

  2. Engels D, Savioli L (2006) Trends Parasitol 22:363–366

    Article  PubMed  Google Scholar 

  3. Urbina J (2003) Expert Opin Ther Pat 13:661–669

    Article  CAS  Google Scholar 

  4. Cerecetto H, González M (2002) Curr Topics Med Chem 2:1185–1190

    Article  Google Scholar 

  5. Krauth-Siegel RL, Bauer H, Schirmer RH (2005) Angew Chem Int Ed 44:690–715

    Article  CAS  Google Scholar 

  6. Croft S, Barret M, Urbina J (2005) Trends Parasitol 21:508–512

    Article  PubMed  CAS  Google Scholar 

  7. Ceaser M (2005) Lancet Infect Dis 5(8):470–471

    Article  Google Scholar 

  8. Yamagata Y, Nakagawa J (2006) Adv Parasitol 61:129–165

    Article  PubMed  Google Scholar 

  9. Zhang C, Lippard S (2003) Curr Opin Chem Biol 7:481–489

    Article  PubMed  CAS  Google Scholar 

  10. Farrell N (2003) Compr Coord Chem II 9:809–840

    Google Scholar 

  11. Sánchez-Delgado RA, Anzellotti A, Suárez L (2004) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 41. Marcel Dekker, New York, pp 379–419

  12. Sánchez-Delgado RA, Anzellotti A (2004) Mini Rev Med Chem 4:23–30

    Article  PubMed  Google Scholar 

  13. Chibale K (2002) ARKIVOC IX, pp 93–98

  14. Urquiola C, Vieites M, Aguirre G, Marín A, Solano B, Arrambide G, Lavaggi ML, Torre MH, González M, Monge A, Gambino D, Cerecetto H (2006) Bioorg Med Chem 14:5503–5509

    Article  PubMed  CAS  Google Scholar 

  15. Otero L, Vieites M, Boiani L, Denicola A, Rigol C, Opazo L, Olea-Azar C, Maya JD, Morello A, Krauth-Siegel RL, Piro OE, Castellano E, González M, Gambino D, Cerecetto H (2006) J Med Chem 49:3322–3331

    Article  PubMed  CAS  Google Scholar 

  16. Turrens JF, Newton CL, Zhong L, Hernández FR, Whitfield J, Docampo R (1999) FEMS Microbiol Lett 175:217–221

    Article  PubMed  CAS  Google Scholar 

  17. Tobin D, Arvanitidis M, Bisby RH (2002) Biochem Biophys Res Commun 299:155–159

    Article  PubMed  CAS  Google Scholar 

  18. Cerecetto H, González M (2001) Mini Rev Med Chem 1:219–231

    Article  PubMed  CAS  Google Scholar 

  19. Gómez-Quiroga A, Navarro-Ranninger C (2004) Coord Chem Rev 248:119–133

    Article  CAS  Google Scholar 

  20. Hall MD, Hambley TW (2002) Coord Chem Rev 232:49–67

    Article  CAS  Google Scholar 

  21. Hambley TW (1997) Coord Chem Rev 166:181–223

    Article  CAS  Google Scholar 

  22. Bonse S, Richards JM, Ross SA, Lowe G, Krauth-Siegel RL (2000) J Med Chem 43:4812–4821

    Article  PubMed  CAS  Google Scholar 

  23. Lowe G, Droz AS, Vilaiyan T, Weaver GW, Tweedale L, Pratt JM, Rock P, Yardley V, Croft SL (1999) J Med Chem 42:999–1006

    Article  PubMed  CAS  Google Scholar 

  24. Croft SL (1999) Mem Inst Oswaldo Cruz 94:215–220

    Article  PubMed  CAS  Google Scholar 

  25. Shames SL, Fairlamb AH, Cerami A, Walsh CT (1985) Science 227:1485–1487

    Article  Google Scholar 

  26. Schmidt A, Krauth-Siegel RL (2002) Curr Top Med Chem 2:1239–1259

    Article  PubMed  CAS  Google Scholar 

  27. Parajón-Costa BS, González-Baró AC, Baran EJ (2002) Z Anorg Allg Chem 628:1419–1424

    Article  Google Scholar 

  28. Shi JC, Wen TB, Zheng Y, Zhong SJ, Wu DX, Liu QT, Kang BS, Wu BM, Mak TCW (1997) Polyhedron 16:369–375

    Article  CAS  Google Scholar 

  29. Davidson JL, Preston PN, Russo MV (1983) J Chem Soc Dalton Trans 783–786

  30. Zhou J, Li Y, Liu Z, Chen X-T (2005) Acta Crystallogr Sect E61:m195–m197

    CAS  Google Scholar 

  31. Koepp HM, Went H, Strehlow HZ (1960) Z Elektrochem 64:483–491

    CAS  Google Scholar 

  32. Gagné RR, Koval CA, Lisensky GC (1980) Inorg Chem 19:2854–2855

    Article  Google Scholar 

  33. Rigol C, Olea-Azar C, Mendizábal F, Otero L, Gambino D, González M, Cerecetto H (2005) Spectrochim Acta A 61:2933–2938

    Article  CAS  Google Scholar 

  34. Huang L, Lee A, Ellman JA (2002) J Med Chem 45:676–684

    Article  PubMed  CAS  Google Scholar 

  35. Arán VJ, Ochoa C, Boiani L, Buccino P, Cerecetto H, Gerpe A, González M, Montero D, Nogal JJ, Gómez-Barrio A, Azqueta A, López de Ceraín A, Piro OE, Castellano EE (2005) Bioorg Med Chem 13:3197–3207

    Article  PubMed  CAS  Google Scholar 

  36. Mahnken RE, Billadeau MA, Nikonowicz EP, Morrison H (1992) J Am Chem Soc 114:9253–9265

    Article  CAS  Google Scholar 

  37. Otero L, Smircich P, Vieites M, Ciganda M, Cardoso Severino P, Terenzi H, Cerecetto H, Gambino D, Garat B (2007) J Inorg Biochem 101:74–79

    Article  PubMed  CAS  Google Scholar 

  38. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1999) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. Wiley, New York

    Google Scholar 

  39. Ou B, Hampsch-Woodill M, Prior RL (2001) J Agric Food Chem 49:4619–4926

    Article  PubMed  CAS  Google Scholar 

  40. Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) J Agric Food Chem 52:48–54

    Article  PubMed  CAS  Google Scholar 

  41. Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL (1989) Eur J Biochem 180:267–272

    Article  PubMed  Google Scholar 

  42. Denicola A, Rubbo H, Prodanov E, Turrens JF (1992) Mol Biochem Parasitol 54:43–50

    Article  Google Scholar 

  43. Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles de NM, Goldenberg S (1988) Mem Inst Oswaldo Cruz 83(1):123–133

    Article  PubMed  CAS  Google Scholar 

  44. Christmas PB, Turrens JF (2000) FEMS Microbiol Lett 183:225–228

    Article  PubMed  CAS  Google Scholar 

  45. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1999) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, Boston

    Google Scholar 

  46. Tsagkalidis W, Rodewald D, Rehder D, Vergopoulos V (1994) Inorg Chim Acta 219:213–215

    Article  CAS  Google Scholar 

  47. Vieites M, Gambino D, González M, Cerecetto H, Tarulli SH, Quinzani OV, Baran EJ (2006) J Coord Chem 59(1):101–106

    Article  CAS  Google Scholar 

  48. Gambino D, Otero L, Vieites M, Boiani M, González M, Baran EJ, Cerecetto H (2007) Spectrochim Acta A Mol Biomol Spect 68:341–348

    Article  CAS  Google Scholar 

  49. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  50. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  51. Brown ER, Large RF (1971) In: Weisberger A, Rositer BW (eds) Part IIA, Chapter 6. Interscience, New York

  52. Chen X, Hu Y, Wu D, Weng L, Kang B (1991) Polyhedron 10:2651–2657

    Article  CAS  Google Scholar 

  53. Tyler KM, Engman DM (2001) Int J Parasitol 31:472–480

    Article  PubMed  CAS  Google Scholar 

  54. Otero L, Maya JD, Morello A, Rigol C, Barriga G, Rodriguez J, Folch C, Norambuena E, González M, Olea Azar C, Cerecetto H, Gambino D (2008) Med Chem 4:119–126

    Google Scholar 

  55. Krauth-Siegel RL. Personal communication

Download references

Acknowledgments

This work was partially supported by PEDECIBA of Uruguay, TWAS Research Grant 05-312 RG/CHE/LA and Prosul-CNPq project 490209/2005-0. B.P-C. is member of the Research Career of CONICET. We wish to thank R. Luise Krauth-Siegel, Heidelberg University, Germany, for performing the TR inhibition studies and O.E. Piro, Universidad Nacional de La Plata, Argentina, for performing helpful crystal parameter measurements of single crystals of the complexes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinorah Gambino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieites, M., Smircich, P., Parajón-Costa, B. et al. Potent in vitro anti-Trypanosoma cruzi activity of pyridine-2-thiol N-oxide metal complexes having an inhibitory effect on parasite-specific fumarate reductase. J Biol Inorg Chem 13, 723–735 (2008). https://doi.org/10.1007/s00775-008-0358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0358-7

Keywords

Navigation