Skip to main content
Log in

Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

After a review of the current status of density functional theory (DFT) for spin-polarized and spin-coupled systems, we focus on the resting states and intermediates of redox-active metalloenzymes and electron transfer proteins, showing how comparisons of DFT-calculated spectroscopic parameters with experiment and evaluation of related energies and geometries provide important information. The topics we examine include (1) models for the active-site structure of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X; (2) the coupling of electron transfer to proton transfer in manganese superoxide dismutase, with implications for reaction kinetics; (3) redox, pK a, and electronic structure issues in the Rieske iron–sulfur protein, including their connection to coupled electron/proton transfer, and an analysis of how partial electron delocalization strongly alters the electron paramagnetic resonance spectrum; (4) the connection between protein-induced structural distortion and the electronic structure of oxidized high-potential 4Fe4S proteins with implications for cluster reactivity; (5) an analysis of cluster assembly and central-atom insertion into the FeMo cofactor center of nitrogenase based on DFT structural and redox potential calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We warn the reader at this point that the terms “electron exchange”, or “electron exchange potential,” or “exchange hole” have different meanings in HF and DFT methods because these methods are constructed from different starting points. There is a fairly close correspondence for atoms, but not for molecules, and these differences are important.

Abbreviations

ADF:

Amsterdam Density Functional

BP:

Becke 1988–Perdew 1986

BS:

Broken symmetry

B86:

Becke 1986

B88:

Becke 1988

COSMO:

Conductor-like screening model

DFT:

Density functional theory

ENDOR:

Electron–nuclear double resonance

ESEEM:

Electron spin echo envelope modulation

EXAFS:

Extended X-ray absorption fine structure

GGA:

Generalized gradient approximation

G96:

Gill 1996

HF:

Hartree–Fock

HIPIP:

High-potential 4Fe4S protein

LSDA:

Local spin density approximation

MCD:

Magnetic circular dichroism

MM:

Molecular mechanics

MMOH:

Methane monooxygenase

PW91:

Perdew–Wang 1991

QM:

Quantum mechanics

RNR:

Ribonucleotide reductase

RSCP:

Resonance spin crossover pair

SCF:

Self-consistent field

SOD:

Superoxide dismutase

VWN:

Vosko–Wilk–Nusair

References

  1. Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon, Oxford

    Google Scholar 

  2. Noodleman L, Lovell T, Han W-G, Li J, Himo F (2004) Chem Rev 104:459–508

    PubMed  CAS  Google Scholar 

  3. Miller AF, Sorkin DL (1997) Comments Mol Cell Biophys 9:1–48

    CAS  Google Scholar 

  4. Yiklimaz E, Xie J, Brunold TC, Miller A-F (2002) J Am Chem Soc 124:3482–3483

    Google Scholar 

  5. Han W-G, Lovell T, Noodleman L (2002) Inorg Chem 41:205–218

    PubMed  CAS  Google Scholar 

  6. Konecny R, Li J, Fisher CL, Dillet V, Bashford D, Noodleman L (1999) Inorg Chem 38:940–950

    PubMed  CAS  Google Scholar 

  7. Beinert H, Holm RH, Munck E (1997) Science 277:653–659

    PubMed  CAS  Google Scholar 

  8. Torres RA, Lovell T, Noodleman L, Case DA (2003) J Am Chem Soc 125:1923–1936

    PubMed  CAS  Google Scholar 

  9. Asthagiri D, Dillet V, Liu T, Noodleman L, Van Etten RL, Bashford D (2002) J Am Chem Soc 124:10225–10235

    PubMed  CAS  Google Scholar 

  10. Asthagiri D, Liu T, Van Etten RL, Noodleman L, Bashford D (2004) J Am Chem Soc 126:12677–12684

    PubMed  CAS  Google Scholar 

  11. Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D (2005) Science 310:638–642

    PubMed  CAS  Google Scholar 

  12. Hellinga H (1996) Curr Opin Biotechnol 7:437–441

    PubMed  CAS  Google Scholar 

  13. Brazeau BJ, Lipscomb JD (2000) Biochemistry 39:13503–13515

    PubMed  CAS  Google Scholar 

  14. Li J, Nelson MR, Peng CY, Bashford D, Noodleman L (1998) J Phys Chem A 102:6311–6324

    CAS  Google Scholar 

  15. Ludwig ML, Ballou DP, Noodleman L (2001) In: Wieghardt K, Huber R, Poulos T, Messerschmidt A (eds) Handbook of metalloproteins. Wiley, Chichester, pp 652–667

  16. Miller A-F, Padmakumar K, Sorkin DL, Karapetian A, Vance CK (2003) J Inorg Biochem 93:71–83

    PubMed  CAS  Google Scholar 

  17. Lah MS, Dixon MM, Pattridge KA, Stallings WC, Fee JA, Ludwig ML (1995) Biochemistry 34:1646–1660

    PubMed  CAS  Google Scholar 

  18. Bull C, Fee JA (1985) J Am Chem Soc 107:3295–3304

    CAS  Google Scholar 

  19. Bull C, Niederhoffer EC, Yoshida T, Fee JA (1991) J Am Chem Soc 113:4069–4076

    CAS  Google Scholar 

  20. Hsieh Y, Guan Y, Tu C, Bratt PJ, Angerhofer A, Lepock JR, Hickey MJ, Tainer JA, Nick HS, Silverman DN (1998) Biochemistry 37:4731–4739

    PubMed  CAS  Google Scholar 

  21. Chen K, Hirst J, Camba R, Bonagura CA, Stout CD, Burgess BK, Armstrong FA (2000) Nature 405:814

    PubMed  CAS  Google Scholar 

  22. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic, San Diego

    Google Scholar 

  23. Morales R, Chron M-H, Hudry-Clergeon G, Petillot Y, Norager S, Medina M, Frey M (1999) Biochemistry 38:15764–15773

    PubMed  CAS  Google Scholar 

  24. Fontecilla-Camps JC, Ragsdale SW (1999) Adv Inorg Chem 47:283–333

    CAS  Google Scholar 

  25. Greene SH, Richards NGJ (2004) Inorg Chem 43:7030–7041

    PubMed  CAS  Google Scholar 

  26. Kozlowski PM (2001) Curr Opin Chem Biol 5:736–743

    PubMed  CAS  Google Scholar 

  27. Ogliaro F, Cohen S, Filatov M, Harris N, Shaik S (2000) Angew Chem Int Ed Engl 39:3851–3855

    CAS  Google Scholar 

  28. Dickerson LD, Sauer-Masarwa A, Herron N, Fendrick CM, Busch DH (1993) J Am Chem Soc 115:3623–3626

    CAS  Google Scholar 

  29. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution and pathology. Cummings, Menlo Park

    Google Scholar 

  30. Gilchrist ML Jr, Ball JA, Randall DW, Britt RD (1995) Proc Natl Acad Sci 92:9545–9549

    PubMed  CAS  Google Scholar 

  31. Liu KE, Lippard SJ (1995) Adv Inorg Chem 42:263–289

    CAS  Google Scholar 

  32. Stubbe J, van der Donk WA (1995) Chem Biol 2:793–801

    PubMed  CAS  Google Scholar 

  33. Brunold TC, Solomon EI (1999) J Am Chem Soc 121:8277–8287

    CAS  Google Scholar 

  34. Hwang J, Krebs C, Huynh BH, Edmondson DE, Theil EC, Penner-Hahn JE (2000) Science 287:122–125

    PubMed  CAS  Google Scholar 

  35. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:4388–4403

    PubMed  CAS  Google Scholar 

  36. McWeeny R, Sutcliffe BT (1976) Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  37. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  38. Noodleman L, Lovell T, Han W-G, Liu T, Torres RA, Himo F (2003) In: Lever AB (ed) Comprehensive coordination chemistry II, from biology to nanotechnology. Fundamentals, vol 1. Elsevier, Amsterdam, pp 491–510

  39. Li J, Noodleman L, Case DA (1999) In: Solomon EI, Lever ABP (ed) Inorganic electronic structure and spectroscopy. Methods, vol 1. Wiley, New York, pp 661–724

  40. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    CAS  Google Scholar 

  41. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127–11143

    PubMed  CAS  Google Scholar 

  42. Xu X, Goddard WA III (2004) J Chem Phys 121:4068–4082

    PubMed  CAS  Google Scholar 

  43. Gill PMW (1996) Mol Phys 89:433–445

    CAS  Google Scholar 

  44. Slater JC (1972) Adv Quantum Chem 6:1

    CAS  Google Scholar 

  45. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    CAS  Google Scholar 

  46. Xu X, Goddard WA III (2004) Proc Natl Acad Sci USA 101:2673–2677

    PubMed  CAS  Google Scholar 

  47. Edgecombe KE, Becke AD (1995) Chem Phys Lett 244:427–432

    CAS  Google Scholar 

  48. Gritsenko OV, Ensing B, Schipper PRT, Baerends EJ (2000) J Phys Chem A 104:8558–8565

    CAS  Google Scholar 

  49. Gritsenko OV, Schipper PRT, Baerends EJ (1997) J Chem Phys 107:5007–5015

    CAS  Google Scholar 

  50. Tschinke V, Ziegler T (1990) J Phys Chem 93:8051

    CAS  Google Scholar 

  51. Slater JC (1954) Phys Rev 91:528

    Google Scholar 

  52. Noodleman L, Norman JG Jr (1979) J Chem Phys 70:4903–4906

    CAS  Google Scholar 

  53. Noodleman L, Post D, Baerends EJ (1982) Chem Phys 64:159–166

    CAS  Google Scholar 

  54. Jonkers G, de Lange CA, Noodleman L, Baerends EJ (1982) Mol Phys 46:609–620

    CAS  Google Scholar 

  55. Noodleman L, Case DA (1992) Adv Inorg Chem 38:423–470

    Article  CAS  Google Scholar 

  56. Zhao XG, Richardson WH, Chen J-L, Li J, Noodleman L, Tsai H-L, Hendrickson DN (1997) Inorg Chem 36:1198–1217

    PubMed  CAS  Google Scholar 

  57. Swart M, Groenhof AR, Ehlers AW, Lammertsma K (2004) J Phys Chem A 108:5479–5483

    CAS  Google Scholar 

  58. Deeth RJ, Fey N (2004) J Comput Chem 25:1840–1848

    PubMed  CAS  Google Scholar 

  59. Groenhof AR, Swart M, Ehlers AW, Lammertsma K (2005) J Phys Chem A 109:3411–3417

    PubMed  CAS  Google Scholar 

  60. Anderson PW, Hasegawa H (1955) Phys Rev 100:675–681

    CAS  Google Scholar 

  61. Zener C (1951) Phys Rev 82:403

    CAS  Google Scholar 

  62. Noodleman L, Baerends EJ (1984) J Am Chem Soc 106:2316–2327

    CAS  Google Scholar 

  63. Girerd JJ (1983) J Chem Phys 79:1766–1775

    CAS  Google Scholar 

  64. Blondin G, Girerd JJ (1990) Chem Rev 90:1359–1376

    CAS  Google Scholar 

  65. Bominaar EL, Borshch SA, Girerd JJ (1994) J Am Chem Soc 116:5362–5372

    CAS  Google Scholar 

  66. Middleton P, Dickson DPE, Johnson CE, Rush JD (1978) Eur J Biochem 88:135–141

    PubMed  CAS  Google Scholar 

  67. Bobrik MA, Hodgson KO, Holm RH (1977) Inorg Chem 16:1851–1858

    CAS  Google Scholar 

  68. Aizman A, Case DA (1982) J Am Chem Soc 104:3269–3279

    CAS  Google Scholar 

  69. Noodleman L, Case DA, Mouesca J-M, Lamotte B (1996) J Biol Inorg Chem 1:177–182

    CAS  Google Scholar 

  70. Li J, Noodleman L (1998) In: Solomon EI, Hodgson KO (eds) Spectroscopic methods in bioinorganic chemistry. ACS symposium series 692. American Chemical Society, Washington, pp 179–197

  71. Sinnecker S, Neese F, Noodleman L, Lubitz W (2004) J Am Chem Soc 126:2613–2622

    PubMed  CAS  Google Scholar 

  72. Lovell T, Li J, Noodleman L (2001) Inorg Chem 40:5251–5266

    PubMed  CAS  Google Scholar 

  73. Lovell T, Li J, Noodleman L (2002) J Biol Inorg Chem 7:799–809

    PubMed  CAS  Google Scholar 

  74. Han W-G, Liu T, Lovell T, Noodleman L (2006) J Comput Chem (in press)

  75. Noodleman L, Li J, Zhao XG, Richardson WH (1997) In: Springborg M (ed) Density functional methods in chemistry and materials science. Wiley, New York, pp 149–188

  76. Jordanov J, Roth EKH, Fries PH, Noodleman L (1990) Inorg Chem 29:4288–4292

    CAS  Google Scholar 

  77. Mouesca J-M, Chen JL, Noodleman L, Bashford D, Case DA (1994) J Am Chem Soc 116:11898–11914

    CAS  Google Scholar 

  78. Mouesca J-M, Noodleman L, Case DA (1995) Int J Quantum Chem Quantum Biol Symp 22:95–102

    CAS  Google Scholar 

  79. Han W-G, Liu T, Lovell T, Noodleman L (2005) J Am Chem Soc 127:15778–15790

    PubMed  CAS  Google Scholar 

  80. Shu L, Nesheim JC, Kauffmann K, Munck E, Lipscomb JD, Que L Jr (1997) Science 275:515–518

    PubMed  CAS  Google Scholar 

  81. Lovell T, Han W-G, Liu T, Noodleman L (2002) J Am Chem Soc 124:5890–5894

    PubMed  CAS  Google Scholar 

  82. Baik M-H, Newcomb M, Friesner RA, Lippard SJ (2003) Chem Rev 103:2385–2419

    PubMed  CAS  Google Scholar 

  83. Richard P, Ehrenberg A (1983) Science 221:514–519

    Google Scholar 

  84. Willems JP, Lee HI, Burdi D, Doan PE, Stubbe J, Hoffman BM (1997) J Am Chem Soc 119:9816–9824

    CAS  Google Scholar 

  85. Burdi D, Willems JP, Riggs-Gelasco PJ, Antholine WE, Stubbe J, Hoffman BM (1998) J Am Chem Soc 120:12910–12919

    CAS  Google Scholar 

  86. Mitic N, Saleh L, Schenk G, Bollinger JM Jr, Solomon EI (2003) J Am Chem Soc 125:11200–11201

    PubMed  CAS  Google Scholar 

  87. Han W-G, Liu T, Lovell T, Noodleman L (2006) (submitted)

  88. Han W-G, Liu T, Lovell T, Noodleman L (2006) J Inorg Biochem 100:771–779

    PubMed  CAS  Google Scholar 

  89. Siegbahn PEM (2001) J Biol Inorg Chem 6:27

    PubMed  CAS  Google Scholar 

  90. Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ (1995) Chem Biol 2:409–418

    CAS  Google Scholar 

  91. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf D (1997) Protein Sci 6:556–568

    Article  PubMed  CAS  Google Scholar 

  92. Adams DM, Noodleman L, Hendrickson DN (1997) Inorg Chem 36:3966–3984

    CAS  Google Scholar 

  93. Szilagyi RK, Bryngelson PA, Maroney MJ, Hedman B, Hodgson KO, Solomon EI (2004) J Am Chem Soc 126:3018–3019

    PubMed  CAS  Google Scholar 

  94. Fiedler AT, Bryngelson PA, Maroney MJ, Brunold TC (2005) J Am Chem Soc 127:5449–5462

    PubMed  CAS  Google Scholar 

  95. Pelmenschikov V, Siegbahn PEM (2006) J Am Chem Soc (in press)

  96. Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Biochemistry 43:8038–8047

    PubMed  CAS  Google Scholar 

  97. Zu Y, Fee JA, Hirst J (2001) J Am Chem Soc 123:9906–9907

    PubMed  CAS  Google Scholar 

  98. Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–579

    PubMed  CAS  Google Scholar 

  99. Ullmann GM, Noodleman L, Case DA (2002) J Biol Inorg Chem 7:632–639

    PubMed  CAS  Google Scholar 

  100. Link TA, Hagen WR, Pierik AJ, Assmann C, von Jagow G (1992) Eur J Biochem 208:685–691

    PubMed  CAS  Google Scholar 

  101. de Oliviera FT, Bominaar EL, Hirst J, Fee JA, Munck E (2004) J Am Chem Soc 126:5338–5339

    Google Scholar 

  102. Caldeira J, Belle V, Asso M, Guigliarelli B, Moura I, Moura JJG, Bertrand P (2000) Biochemistry 39:2700–2707

    PubMed  CAS  Google Scholar 

  103. Fee JA, Castagnetto JC, Case DA, Noodleman L, Stout CD, Torres RA (2003) J Biol Inorg Chem 8:519–526

    PubMed  CAS  Google Scholar 

  104. Noodleman L, Peng CY, Case DA, Mouesca J-M (1995) Coord Chem Rev 144:199–244

    CAS  Google Scholar 

  105. Lovell T, Liu T, Case DA, Noodleman L (2003) J Am Chem Soc 125:8377–8383

    PubMed  CAS  Google Scholar 

  106. Howard JB, Rees DC (1996) Chem Rev 96:2965–2982

    PubMed  CAS  Google Scholar 

  107. Bolin JT, Campobasso N, Muchmore SW, Morgan TV, Mortenson LE (1993) In: Steifel EI, Coucoucanis D, Newton WE (eds) Molybdenum enzymes, cofactors, and model systems. American Chemical Society, Washington, pp 186–195

  108. Mayer SM, Lawson DM, Gormal CA, Roe SM, Smith BE (1999) J Mol Biol 292:871–891

    PubMed  CAS  Google Scholar 

  109. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696

    PubMed  CAS  Google Scholar 

  110. Lovell T, Li J, Liu T, Case DA, Noodleman L (2001) J Am Chem Soc 123:12392–12410

    PubMed  CAS  Google Scholar 

  111. Lovell T, Li J, Case DA, Noodleman L (2002) J Biol Inorg Chem 7:735–749

    PubMed  CAS  Google Scholar 

  112. Rod TH, Norskov JK (2000) J Am Chem Soc 122:12751–12763

    CAS  Google Scholar 

  113. Stavrev KK, Zerner MC (1998) Int J Quantum Chem 70:1159–1168

    CAS  Google Scholar 

  114. Yang T-C, Maeser NK, Laryukhin M, Lee H-I, Dean DR, Seefeldt LC, Hoffman BM (2005) J Am Chem Soc 127:12804–12805

    PubMed  CAS  Google Scholar 

  115. Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B, Hodgson KO (2006) Proc Natl Acad Sci USA 103:1238–1243

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank all the former group members who contributed to some of the research reported here, particularly T. Lovell, R. Torres, F. Himo, J. Li, T. Liu, G.M. Ullmann, L. Hunsicker-Wang, J.-M. Mouesca, C.L. Fisher, R. Konecny, X.-G. Zhao, S. Sinnecker, and my collaborators D.A. Case, J.A. Fee, and D. Bashford. We thank V. Roberts, J.A. Fee, and V. Pelmenschikov for their critical reading and comments on the manuscript. This work was funded by NIH grants GM43278 and GM39914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Noodleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noodleman, L., Han, WG. Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. J Biol Inorg Chem 11, 674–694 (2006). https://doi.org/10.1007/s00775-006-0136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0136-3

Keywords

Navigation