Skip to main content

Advertisement

Log in

Millimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channel

Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Previously, we reported that millimeter wave promoted the chondrocyte proliferation by pushing cell cycle progression. Activation of K+ channels plays an essential role in the stimulating of extracellular matrix (ECM) synthesis and the cell proliferation in chondrocytes. While it is unclear if millimeter wave enhances ECM synthesis and proliferation of chondrocytes by regulating K+ channel activity, we here investigated the effects of millimeter waves on ECM synthesis, chondrocyte proliferation and ion channels in the primary chondrocyte culture. We found that millimeter waves led to the increase of chondrocyte viability, the morphological changes of chondrocyte, and the F-actin distortion and remodeling. Ultrastructural analysis showed that treated chondrocytes contained an expansion of mitochondria and granular endoplasmic reticulum, and a high number of cytoplasmic vesicles in the cytoplasm compared to untreated cells, suggesting millimeter waves increased the energy metabolism and protein synthesis of chondrocytes. The analysis of differential ion channels’ genes expression further showed an obvious increase of Kcne1, Kcnj3 and Kcnq2. To determine the role of voltage-gated K+ channel in chondrocyte, we blocked the voltage-gated K+ channel with 10 mM tetraethylammonium (TEA) and treated chondrocytes with millimeter waves. The results indicated that TEA significantly negated the promotion of millimeter waves for the ECM synthesis and chondrocyte proliferation. Our results support the hypothesis that millimeter waves promote the synthesis of ECM and the proliferation of chondrocyte by regulating the voltage-gated K+ channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perkins GL, Derfoul A, Ast A, Hall DJ (2005) An inhibitor of the stretch-activated cation receptor exerts a potent effect on chondrocyte phenotype. Differentiation 73:199–211

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37:1–57

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wohlrab D, Lebek S, Krüger T, Reichel H (2002) Influence of ion channels on the proliferation of human chondrocytes. Biorheology 39:55–61

    CAS  PubMed  Google Scholar 

  4. Wohlrab D, Wohlrab J, Reichel H, Hein W (2001) Is the proliferation of human chondrocytes regulated by ionic channels? J Orthop Sci 6:155–159

    Article  CAS  PubMed  Google Scholar 

  5. Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256:383–391

    Article  CAS  PubMed  Google Scholar 

  6. Mobasheri A, Trujillo E, Arteaga MF, Martín-Vasallo P (2012) Na(+), K(+)-ATPase Subunit Composition in a Human Chondrocyte Cell Line; Evidence for the Presence of α1, α3, β1, β2 and β3 Isoforms. Int J Mol Sci 13:5019–5034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hoffmann EK, Pedersen SF (2011) Cell volume homeostatic mechanisms: effectors and signalling pathways. Acta Physiol (Oxf) 202:465–485

    Article  CAS  Google Scholar 

  8. Brini M, Carafoli E (2000) Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol Life Sci 57:354–370

    Article  CAS  PubMed  Google Scholar 

  9. Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35:401–404

    Article  CAS  PubMed  Google Scholar 

  10. Mobasheri A (1999) Regulation of Na+, K+-ATPase density by the extracellular ionic and osmotic environment in bovine articular chondrocytes. Physiol Res 48:509–512

    CAS  PubMed  Google Scholar 

  11. Mobasheri A, Trujillo E, Bell S, Carter SD, Clegg PD, Martín-Vasallo P, Marples D (2004) Aquaporin water channels AQP1 and AQP3, are expressed in equine articular chondrocytes. Vet J 168:143–150

    Article  CAS  PubMed  Google Scholar 

  12. Guilak F (2000) The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology 37:27–44

    CAS  PubMed  Google Scholar 

  13. Mobasheri A, Lewis R, Ferreira-Mendes A, Rufino A, Dart C, Barrett-Jolley R (2012) Potassium channels in articular chondrocytes. Channels (Austin) 6:416–425

    Article  CAS  Google Scholar 

  14. Clark RB, Hatano N, Kondo C, Belke DD, Brown BS, Kumar S, Votta BJ, Giles WR (2010) Voltage-gated K+ currents in mouse articular chondrocytes regulate membrane potential. Channels (Austin) 4:179–191

    Article  CAS  Google Scholar 

  15. Ponce A (2006) Expression of voltage dependent potassium currents in freshly dissociated rat articular chondrocytes. Cell Physiol Biochem 18:35–46

    Article  CAS  PubMed  Google Scholar 

  16. Funabashi K, Ohya S, Yamamura H, Hatano N, Muraki K, Giles W, Imaizumi Y (2010) Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes. Am J Physiol Cell Physiol 298:C786–C797

    Article  CAS  PubMed  Google Scholar 

  17. Lewis R, Feetham CH, Barrett-Jolley R (2011) Cell volume regulation in chondrocytes. Cell Physiol Biochem 28:1111–1122

    Article  CAS  PubMed  Google Scholar 

  18. Wohlrab D, Vocke M, Klapperstück T, Hein W (2004) Effects of potassium and anion channel blockers on the cellular response of human osteoarthritic chondrocytes. J Orthop Sci 9:364–3671

    Article  CAS  PubMed  Google Scholar 

  19. Yan Q, Feng Q, Beier F (2010) Endothelial nitric oxide synthase deficiency in mice results in reduced chondrocyte proliferation and endochondral bone growth. Arthritis Rheum 62:2013–2022

    CAS  PubMed  Google Scholar 

  20. Lewis R, Asplin KE, Bruce G, Dart C, Mobasheri A, Barrett-Jolley R (2011) The role of the membrane potential in chondrocyte volume regulation. J Cell Physiol 226:2979–2986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Qusous A, Geewan CS, Greenwell P, Kerrigan MJ (2011) siRNA-mediated inhibition of Na(+)-K(+)-2Cl cotransporter (NKCC1) and regulatory volume increase in the chondrocyte cell line C-20/A4. J Membr Biol 243:25–34

    Article  CAS  PubMed  Google Scholar 

  22. Xia L, Luo QL, Lin HD, Zhang JL, Guo H, He CQ (2012) The effect of different treatment time of millimeter wave on chondrocyte apoptosis, caspase-3, caspase-8, and MMP-13 expression in rabbit surgically induced model of knee osteoarthritis. Rheumatol Int 32:2847–2856

    Article  CAS  PubMed  Google Scholar 

  23. Wu G, Sferra T, Chen X, Chen Y, Wu M, Xu H, Peng J, Liu X (2011) Millimeter wave treatment inhibits the mitochondrion-dependent apoptosis pathway in chondrocytes. Mol Med Report 4:1001–1006

    Article  CAS  Google Scholar 

  24. Miryutova NF, Levitskii EF, Kozhemyakin AM, Mavlyautdinova IM (2001) Millimeter waves in the treatment of neurological manifestations of vertebral osteochondrosis. Crit Rev Biomed Eng 29:613–621

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Ye H, Yu F, Cai L, Li H, Chen J, Wu M, Chen W, Lin R, Li Z, Zheng C, Xu H, Wu G, Liu X (2012) Millimeter wave treatment promotes chondrocyte proliferation via G1/S cell cycle transition. Int J Mol Med 29:823–831

    CAS  PubMed  Google Scholar 

  26. Li X, Du M, Liu X, Chen W, Wu M, Lin J, Wu G (2010) Millimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin A. Int J Mol Med 26:77–84

    PubMed  Google Scholar 

  27. Nishimura I, Chano T, Kita H, Matsusue Y, Okabe H (2011) RB1CC1 protein suppresses type II collagen synthesis in chondrocytes and causes dwarfism. J Biol Chem 286:43925–43932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mobasheri A, Gent TC, Nash AI, Womack MD, Moskaluk CA, Barrett-Jolley R (2007) Evidence for functional ATP-sensitive (K(ATP)) potassium channels in human and equine articular chondrocytes. Osteoarthritis Cartilage 15:1–8

    Article  CAS  PubMed  Google Scholar 

  29. Clark RB, Kondo C, Belke DD, Giles WR (2011) Two-pore domain K+ channels regulate membrane potential of isolated human articular chondrocytes. J Physiol 589:5071–5089

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Clarke OB, Gulbis JM (2012) Oligomerization at the membrane: potassium channel structure and function. Adv Exp Med Biol 747:122–136

    Article  CAS  PubMed  Google Scholar 

  31. Mizuno S, Ogawa R (2011) Using changes in hydrostatic and osmotic pressure to manipulate metabolic function in chondrocytes. Am J Physiol Cell Physiol 300:C1234–C1245

    Article  CAS  PubMed  Google Scholar 

  32. Okazaki R, Sakai A, Uezono Y, Ootsuyama A, Kunugita N, Nakamura T, Norimura T (2001) Sequential changes in transforming growth factor (TGF)-beta1 concentration in synovial fluid and mRNA expression of TGF-beta1 receptors in chondrocytes after immobilization of rabbit knees. J Bone Miner Metab 19:228–235

    Article  CAS  PubMed  Google Scholar 

  33. Bader DL, Ohashi T, Knight MM, Lee DA, Sato M (2002) Deformation properties of articular chondrocytes: a critique of three separate techniques. Biorheology 39:69–78

    CAS  PubMed  Google Scholar 

  34. Sánchez JC, Danks TA, Wilkins RJ (2003) Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes. Gen Physiol Biophys 22:487–500

    PubMed  Google Scholar 

  35. Browning JA, Saunders K, Urban JP, Wilkins RJ (2004) The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. Biorheology 41:299–308

    CAS  PubMed  Google Scholar 

  36. Pingguan-Murphy B, El-Azzeh M, Bader DL, Knight MM (2006) Cyclic compression of chondrocytes modulates a purinergic calcium signalling pathway in a strain rate- and frequency-dependent manner. J Cell Physiol 209:389–397

    Article  CAS  PubMed  Google Scholar 

  37. Mobasheri A, Gent TC, Womack MD, Carter SD, Clegg PD, Barrett-Jolley R (2005) Quantitative analysis of voltage-gated potassium currents from primary equine (Equus caballus) and elephant (Loxodonta africana) articular chondrocytes. Am J Physiol Regul Integr Comp Physiol 289:R172–R180

    Article  CAS  PubMed  Google Scholar 

  38. Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256:383–391

    Article  CAS  PubMed  Google Scholar 

  39. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca(2 +)-activated K(+) channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol 287:C125–C134

    Article  CAS  PubMed  Google Scholar 

  40. MacFarlane SN, Sontheimer H (2000) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48

    Article  CAS  PubMed  Google Scholar 

  41. Braun GS, Veh RW, Segerer S, Horster MF, Huber SM (2002) Developmental expression and functional significance of Kir channel subunits in ureteric bud and nephron epithelia. Pflugers Arch 445:321–330

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286

    Article  CAS  PubMed  Google Scholar 

  43. Matta C, Fodor J, Szíjgyártó Z, Juhász T, Gergely P, Csernoch L, Zákány R (2008) Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells. Cell Calcium 44:310–323

    Article  CAS  PubMed  Google Scholar 

  44. Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 152:142–160

    Article  CAS  PubMed  Google Scholar 

  45. Hoffmann EK (2011) Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells. Cell Physiol Biochem 28:1061–1078

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Developmental Fund of Chen Keji Integrative Medicine (Grant No. CKJ2010013&CKJ2010035), Youth Foundation of Fujian Provincial Health Bureau (Grant No. 2011-2-31) and Natural Science Foundation of Fujian Province (Grant No. 2011J05076).

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxia Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

About this article

Cite this article

Li, X., Liu, C., Liang, W. et al. Millimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channel. J Bone Miner Metab 32, 367–377 (2014). https://doi.org/10.1007/s00774-013-0513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0513-2

Keywords

Navigation