, Volume 18, Issue 2, pp 166-181

Turn and zigzag maneuvers of a surface combatant using a URANS approach with dynamic overset grids

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Unsteady Reynolds averaged Navier–Stokes (URANS) computations of standard maneuvers are performed for a surface combatant at model and full scale. The computations are performed using CFDShip-Iowa v4, a free surface solver designed for 6DOF motions in free and semi-captive problems. Overset grids and a hierarchy of bodies allow the deflection of the rudders while the ship undergoes 6DOF motions. Two types of maneuvers are simulated: steady turn and zigzag. Simulations of steady turn at 35° rudder deflection and zigzag 20/20 maneuvers for Fr = 0.25 and 0.41 using constant RPM propulsion are benchmarked against experimental time histories of yaw, yaw rate and roll, and trajectories, and also compared against available integral variables. Differences between CFD and experiments are mostly within 10 % for both maneuvers, highly satisfactory given the degree of complexity of these computations. Simulations are performed also with waves, and with propulsion at either constant RPM or torque. 20/20 zigzag maneuvers are simulated at model and full scale for Fr = 0.41. The full scale case produces a thinner boundary layer profile compared to the model scale with different reaction times and handling needed for maneuvering. Results indicate that URANS computations of maneuvers are feasible, though issues regarding adequate modeling of propellers remain to be solved.