Skip to main content

Advertisement

Log in

Proficiency test of pH, conductivity and dissolved oxygen concentration field measurements in river water

  • Practitioner's Report
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

In 2013, Proftest SYKE organised the first proficiency test (PT) in Finland for field measurements of temperature, conductivity, dissolved oxygen concentration, oxygen saturation and pH value in river water. The aim was to pilot the organisation of an in situ proficiency test—particularly, how to select the test location—and how to assess the homogeneity and stability of the measurement site and the water to be tested. The focus was also to evaluate the suitability of the common field sensors used for water analysis, as well as the comparability of the results between the instruments under field conditions. The overall application of quality assurance procedures was also surveyed. This paper deals with the results, findings and recommendations for the measurement of pH, conductivity and dissolved oxygen concentration. In total, nine participants with 16 sensors took part in the proficiency test. For the evaluation of the performance of each participant, z scores were calculated allowing 3 % to 8 % deviation from the assigned value. The standard deviation of the participant’s results was lower than organiser expected, and 80 % of the results for pH, 79 % for conductivity and 69 % for dissolved oxygen concentration were regarded as satisfactory. According to the results, the most challenging measurement was for dissolved oxygen with a Clark cell-type measurement principle based on electrochemical reaction. All sensors tested in the PT were less than 5 years, old and they were calibrated according to the manufacturer’s instructions. None of the participants had estimated measurement uncertainty for their sensor measurements. In addition, internal and external quality assurance protocols were usually lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 86/2000, Environmental Protection Act. http://www.finlex.fi/fi/laki/kaannokset/2000/en20000086.pdf

  2. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Technical report—2009—025 guidance document no. 19 guidance on surface water chemical monitoring under the water framework directive. https://circabc.europa.eu/sd/d/e54e8583-faf5-478f-9b11-41fda9e9c564/Guidance%20No%2019%20-%20Surface%20water%20chemical%20monitoring.pdf

  3. Monitoring Strategy of the State of the Environment 2020 (In Finnish) (2011) Ministry of the environment, Helsinki 2011. http://www.ym.fi/download/noname/%7B4A092091-75FE-4090-B630-D24631212388%7D/32105

  4. Näykki T, Koponen S, Väisänen T, Pyhälahti T, Toivanen T, Leito I (2014) Validation of a new measuring system for water turbidity field measurements. Accred Qual Assur. doi:10.1007/s00769-014-1052-9

    Google Scholar 

  5. EN ISO/IEC 17025:2005 (2005) General requirements for the competence of testing and calibration laboratories. European Committee for Standardization

  6. ISO 13528:2005 (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. International Standard Organization (ISO), Geneva

  7. Näykki T, Jalukse L, Helm I, Leito I (2013) Dissolved oxygen concentration interlaboratory comparison: what can we learn? Water 5:420–442

    Article  Google Scholar 

  8. Jalukse L, Vabson V, Leito I (2006) In situ interlaboratory comparisons for dissolved oxygen concentration and pH. Accred Qual Assur 10:562–564

    Article  CAS  Google Scholar 

  9. Vaquero-Gonzalez P, García-Andreu F (2011) Development and accreditation of proficiency testing schemes based on flow and “in situ” parameters in different matrices. In: 7th Eurachem Workshop on Proficiency Testing, Istanbul. http://www.eurachem.org/images/stories/workshops/2011_10_PT/presentations/%5B12%5D%20EURACHEM%20PT%20Workshop%20Oct%202011.pdf

  10. Miège C, Schiavone S, Dabrin A, Coquery M, Mazzella N, Berho C, Ghestem J-P, Togola A, Gonzalez C, Gonzalez J-L, Lalere B, Lardy-Fontan S, Lepot B, Munaron D, Tixier C (2010) An in situ intercomparison exercise on passive samplers for monitoring metals, polycyclic aromatic hydrocarbons and pesticides in surface waters. Trends Anal Chem 36:128–143

    Article  Google Scholar 

  11. Cotman M, Vrtovšek J, Pintar A (2011) Traditional methods and new approaches for proficiency testing of wastewater sampling. In: 7th Eurachem Workshop on Proficiency Testing, Istanbul. http://www.eurachem.org/images/stories/workshops/2011_10_PT/presentations/%5B23%5D%20EURACHEM%20PT%20Workshop%20Oct%202011.pdf

  12. Facchi A, Gandolfi C, Whelan MJ (2007) A comparison of river water quality sampling methodologies under highly variable load conditions. Chemosphere 66:746–756

    Article  CAS  Google Scholar 

  13. Björklöf K, Nikunen S, Westerholm H, Kähkölä T, Vepsäläinen M, Nuutinen J, Leivuori M, Pyy O (2013) Comparison test on sampling 14/2012, volatile petroleum hydrocarbons in soil (In Finnish). Reports of the Finnish Environment Institute, Finnish Environment Institute, Helsinki. https://helda.helsinki.fi/bitstream/handle/10138/39506/SYKEra_21_2013.pdf?sequence=1

  14. http://www.ielab.sp

  15. Leivuori M, Björklöf K, Näykki T, Väisänen R (2013) Laboratorioiden välinen pätevyyskoe 5/2013, Kenttämittaukset -vesien happi, lämpötila, pH ja sähkönjohtavuus (In Finnish), Finnish Environment Institute, Helsinki. http://www.syke.fi/download/noname/%7BFD00FB6D-21B3-4D8F-8C35-424926B9E626%7D/92086

  16. EN ISO-IEC 17043:2010 (2010) Conformity assessment—general requirements for proficiency testing. International Standard Organization (ISO), Geneva

  17. Thompson M, Ellison SLR, Wood R (2006) The international harmonized protocol for the proficiency testing of analytical chemistry laboratories. Pure Appl Chem 78:145–196

    Article  CAS  Google Scholar 

  18. Ramsey MH, Ellison SLR (eds) (2007) Eurachem/EUROLAB/CITAC/Nordtest/AMC guide: Measurement uncertainty arising from sampling- a guide to methods and approaches Eurachem. http://www.rsc.org/images/EURACHEM1_tcm18-102815.pdf

  19. Helm I, Jalukse L, Leito I (2012) A highly accurate method for determination of dissolved oxygen: gravimetric Winkler method. Anal Chim Acta 741:21–31

    Article  CAS  Google Scholar 

  20. ISO 5814:2012 (2012) Water quality—determination of dissolved oxygen—electrochemical probe method. International Standard Organization (ISO), Geneva

  21. Corder GW, Foreman DI (2009) Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley, Hoboken

    Book  Google Scholar 

  22. Linsinger TPJ, Kandler W, Krska R, Grasserbauer M (1998) The Influence of different evaluation techniques on the results of interlaboratory comparisons. Accred Qual Assur 3:322–327

    Article  CAS  Google Scholar 

  23. Korhonen-Ylönen K, Näykki T, Leivuori M, Tervonen K, Lanteri S, Ilmakunnas M (2013) Proficiency test SYKE 2/2013, chlorophyll a, colour, conductivity, nutrients, ph and turbidity in natural waters. Reports of Finnish Environment Institute 20, Finnish Environment Institute, Helsinki. http://www.syke.fi/download/noname/%7BF576874A-DA49-4064-B514-6FC782D0E73B%7D/56911

  24. Korhonen-Ylönen K, Leivuori M, Turunen M, Näykki T, Järvinen O, Sarkkinen M, Tervonen K, Lanteri S, Ilmakunnas M, Väisänen R (2012) Laboratorioiden välinen pätevyyskoe 4/2012, Happi, a-klorofylli, saliniteetti, SiO2, TIC ja TOC luonnonvesistä (In Finnish), Suomen ympäristökeskuksen raportteja 22/2012. Finnish Environment Institute, Helsinki. http://www.syke.fi/download/noname/%7B6ABF3655-B4CB-44B0-9D56-49EF948F8339%7D/29481

  25. Fearn T, Thompson M (2001) A new test for ‘sufficient homogeneity’. Analyst 126:1414–1417

    Article  CAS  Google Scholar 

  26. Helm I, Jalukse L, Leito I (2010) Measurement uncertainty estimation in amperometric sensors: a tutorial review. Sensors 10:4430–4455

    Article  Google Scholar 

  27. Johnston MW, Williams JS (2006) Field comparison of optical and Clark cell dissolved oxygen sensors in the Tualatin River. U.S. Geological Survey Open-File Report 2006-1047, Oregon, p 11

  28. Näykki T, Kyröläinen H, Witick A, Mäkinen I, Pehkonen R, Väisänen T, Sainio P, Luotola M (2013) Quality recommendations for data entered into the environmental administration’s water quality registers: Quantification limits, measurement uncertainties, storage times and methods associated with analytes determined from waters (In Finnish), Environmental Administration Guidelines 4/2013, Finnish Environment Institute, Helsinki. https://helda.helsinki.fi/handle/10138/40920

  29. Hovind H, Magnusson B, Krysell M, Lund U, Mäkinen I (2011). Nordtest technical report 569—internal quality control—handbook for chemical laboratories, 4th edn. Nordic Innovation, Oslo. www.nordtest.info

Download references

Acknowledgments

The authors would like to thank Jaana Marttila and Maija Lehtinen from Uusimaa ELY Centre (Centre for Economic Development, Transport and the Environment) and Heli Vahtera from the Water Protection Association of the River Vantaa and Helsinki Region for assisting in the selection of the site for the PT. Mikko Junttila is acknowledged for his validation of the sensors. This work has been partially supported by Graduate School “Functional materials and technologies” receiving funding from the European Social Fund under project 1.2.0401.09-0079 in University of Tartu, Estonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Näykki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Näykki, T., Leivuori, M., Björklöf, K. et al. Proficiency test of pH, conductivity and dissolved oxygen concentration field measurements in river water. Accred Qual Assur 19, 259–268 (2014). https://doi.org/10.1007/s00769-014-1064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-014-1064-5

Keywords

Navigation