Skip to main content
Log in

Pathogenese, Klassifikation und Histologie von Schilddrüsenkarzinomen

Pathogenesis, classification, and histology of thyroid cancer

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Schilddrüsenkarzinome machen ca. 1% aller menschlichen Malignome aus und werden aufgrund ihrer Morphologie in Karzinome mit Follikelzell- und C-Zell-Differenzierung sowie seltene Karzinomformen unterteilt. Umfassende molekulargenetische Erkenntnisse unterstützen die morphologische Diagnostik und erlauben Einsicht in die Entstehungs- und Progressionsmechanismen dieser Tumoren. Der vorliegende Übersichtsartikel beschreibt die Pathogenese, Klassifikation und Histologie der unterschiedlichen Karzinomentitäten der Schilddrüse. Eine exakte histologische Klassifikation der Schilddrüsenkarzinome, ggf. unter Anwendung immunhistochemischer und/oder molekulargenetischer Untersuchungen, ist für das therapeutische Management der Patienten nach wie vor unabdingbar.

Abstract

Thyroid cancer makes up approximately 1% of all human malignancies. Morphologically thyroid cancer can be subdivided into carcinomas with follicular cell differentiation, C cell differentiation and other rare carcinoma types. Recent molecular genetic discoveries provide insight into the mechanisms of the development and progression of thyroid carcinoma and furthermore offer perfect tools to support the morphological diagnosis. Exact histological classification of thyroid carcinomas is still the gold standard for the therapeutic management of thyroid carcinoma patients, if necessary based on immunohistochemical and/or molecular pathological findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Arora N, Scognamiglio T, Zhu B, Fahey TJ 3rd (2008) Do benign thyroid nodules have malignant potential? An evidence-based review. World J Surg 32:1237–1246

    Article  PubMed  Google Scholar 

  2. Baloch ZW, LiVolsi VA (2001) Prognostic factors in well-differentiated follicular-derived carcinoma and medullary thyroid carcinoma. Thyroid 11:637–645

    Article  PubMed  CAS  Google Scholar 

  3. Bongarzone I, Butti MG, Fugazzola L et al (1997) Comparison of the breakpoint regions of ELE1 and RET genes involved in the generation of RET/PTC3 oncogene in sporadic and in radiation-associated papillary thyroid carcinomas. Genomics 42:252–259

    Article  PubMed  CAS  Google Scholar 

  4. Cheung L, Messina M, Gill A et al (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–357

    Article  PubMed  CAS  Google Scholar 

  5. Elisei R, Cosci B, Romei C et al (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93:682–687

    Article  PubMed  CAS  Google Scholar 

  6. Franc B, Salmonière P de la, Lange F et al (2003) Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Hum Pathol 34:1092–1100

    Article  PubMed  Google Scholar 

  7. Harach HR, Franssila KO, Wasenius VM (1985) Occult papillary carcinoma of the thyroid. A „normal“ finding in Finland. A systematic autopsy study. Cancer 56:531–538

    Article  PubMed  CAS  Google Scholar 

  8. Harach HR, Wilander E, Grimelius L et al (1992) Chromogranin A immunoreactivity compared with argyrophilia, calcitonin immunoreactivity, and amyloid as tumour markers in the histopathological diagnosis of medullary (C-cell) thyroid carcinoma. Pathol Res Pract 188:123–130

    PubMed  CAS  Google Scholar 

  9. Harach HR (1997) Histogenesis of thyroid C-cell carcinoma. Curr Top Pathol 91:15–20

    PubMed  CAS  Google Scholar 

  10. He H, Jazdzewski K, Li W, Liyanarachchi S et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080

    Article  PubMed  CAS  Google Scholar 

  11. Hofman V, Lassalle S, Bonnetaud C et al (2009) Thyroid tumours of uncertain malignant potential: frequency and diagnostic reproducibility. Virchows Arch 455:21–33

    Article  PubMed  CAS  Google Scholar 

  12. Karger S, Weidinger C, Krause K et al (2009) FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 16:189–199

    Article  PubMed  CAS  Google Scholar 

  13. Kaserer K, Scheuba C, Neuhold N et al (2001) Sporadic versus familial medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am J Surg Pathol 25:1245–1251

    Article  PubMed  CAS  Google Scholar 

  14. Koperek O, Scheuba C, Cherenko M et al (2008) Desmoplasia in medullary thyroid carcinoma: a reliable indicator of metastatic potential. Histopathology 52:623–630

    Article  PubMed  CAS  Google Scholar 

  15. Machens A, Holzhausen HJ, Dralle H (2005) The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 103:2269–2273

    Article  PubMed  Google Scholar 

  16. Mulligan LM, Eng C, Healey CS et al (1994) Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 6:70–74

    Article  PubMed  CAS  Google Scholar 

  17. Musholt PB, Musholt TJ, Morgenstern SC et al (2008) Follicular histotypes of oncocytic thyroid carcinomas do not carry mutations of the BRAF hot-spot. World J Surg 32:722–728

    Article  PubMed  Google Scholar 

  18. Nikiforova MN, Lynch RA, Biddinger PW et al (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  PubMed  CAS  Google Scholar 

  19. Nikiforova MN, Nikiforov YE (2008) Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 8:83–95

    Article  PubMed  CAS  Google Scholar 

  20. Raue F, Frank-Raue K (2009) Genotype-phenotype relationship in multiple endocrine neoplasia type 2. Implications for clinical management. Hormones (Athens) 8:23–28

    Google Scholar 

  21. Rosai J, LiVolsi VA, Sobrinho-Simoes M, Williams ED (2003) Renaming papillary microcarcinoma of the thyroid gland: the Porto proposal. Int J Surg Pathol 11:249–251

    Article  PubMed  Google Scholar 

  22. Saggiorato E, Rapa I, Garino F et al (2007) Absence of RET gene point mutations in sporadic thyroid C-cell hyperplasia. J Mol Diagn 9:214–219

    Article  PubMed  CAS  Google Scholar 

  23. Schmid KW, Ensinger C (1998) Atypical medullary thyroid carcinoma with little or no calcitonin expression. Virchows Arch 433:209–215

    Article  PubMed  CAS  Google Scholar 

  24. Schmid KW, Sheu SY, Görges R et al (2003) Tumoren der Schilddrüse. Pathologe 24:357–372

    Article  PubMed  CAS  Google Scholar 

  25. Schmid KW, Sheu S-Y, Tötsch M et al (2005) Pathologie des Schilddrüsenkarzinoms. Onkologe 11:29–39

    Article  Google Scholar 

  26. Schmid KW, Farid NR (2006) How to define follicular thyroid carcinoma? Virchows Arch 448:385–393

    Article  PubMed  Google Scholar 

  27. Schwertheim S, Sheu SY, Worm K et al (2009) Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res 41:475–481

    Article  PubMed  CAS  Google Scholar 

  28. Sheu SY, Schwertheim S, Worm K et al (2007) Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod Pathol 20:779–787

    Article  PubMed  CAS  Google Scholar 

  29. Sheu SY, Grabellus F, Schwertheim S et al (2009) Lack of correlation between BRAF V600E mutational status and the expression profile of a distinct set of miRNAs in papillary thyroid carcinoma. Horm Metab Res 41:482–487

    Article  PubMed  CAS  Google Scholar 

  30. Sheu SY, Grabellus F, Schwertheim S et al (2010) Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer 102:376–382

    Article  PubMed  CAS  Google Scholar 

  31. Sippel RS, Caron NR, Clark OH (2007) An evidence-based approach to familial nonmedullary thyroid cancer: screening, clinical management, and follow-up. World J Surg 31:924–933

    Article  PubMed  Google Scholar 

  32. Sobin LH, Gospodarowicz MK, Wittekind C (2009) UICC TNM classification of malignant tumours, 7th edn. Wiley-Blackwell, Oxford, pp 60–62

  33. Sobrinho-Simões M, Máximo V, Rocha AS et al (2008) Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am 37:333–362

    Article  PubMed  CAS  Google Scholar 

  34. Volante M, Collini P, Nikiforov YE et al (2007) Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol 31:1256–1264

    Article  PubMed  Google Scholar 

  35. Volante M, Rapa I, Gandhi M et al (2009) RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 94:4735–4741

    Article  PubMed  CAS  Google Scholar 

  36. Vriens MR, Schreinemakers JM, Suh I et al (2009) Diagnostic markers and prognostic factors in thyroid cancer. Future Oncol 5:1283–1293

    Article  PubMed  CAS  Google Scholar 

  37. WHO histological classification of thyroid and parathyroid tumours. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) (2004) World Health Organization classification of tumours. Pathology & genetics. Tumours of endocrine organs. IARC Press, Lyon, pp 49–123

  38. Williams ED (2000) Guest editorial: Two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol 8:181–183

    Article  PubMed  Google Scholar 

  39. Wittekind CH, Greene FL, Henson DE et al (2003) TNM supplement. A commentary on uniform use, 3rd edn. Wiley-Liss, New York, p 138

  40. Xing M (2008) Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol Clin North Am 41:1135–1146

    Article  PubMed  Google Scholar 

  41. Xu X, Quiros RM, Gattuso P et al (2003) High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63:4561–4567

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.W. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, K. Pathogenese, Klassifikation und Histologie von Schilddrüsenkarzinomen. Onkologe 16, 644–656 (2010). https://doi.org/10.1007/s00761-010-1872-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-010-1872-0

Schlüsselwörter

Keywords

Navigation