Skip to main content
Log in

Pathologie und molekulare Pathologie des Hodgkin-Lymphoms

Pathology and molecular pathology of Hodgkin’s lymphoma

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hodgkin-Lymphome (HL) umfassen das noduläre, lymphozytenprädominante Hodgkin-Lymphom und das klassische Hodgkin-Lymphom, die separate Entitäten darstellen. Auch in der neuen WHO-Klassifikation werden die klassischen Hodgkin-Lymphome in den nodulär-sklerosierenden Subtyp, den Mischtyp, den lymphozytenreichen und den lymphozytenarmen Subtyp unterteilt. Hodgkin-Reed-Sternberg- (HRS-)Zellen stellen die Tumorzellpopulation im klassischen Hodgkin-Lymphom dar, während LP-Zellen charakteristisch für das noduläre, lymphozytenprädominante Hodgkin-Lymphom sind. HRS-Zellen stammen wahrscheinlich von präapoptotischen Keimzentrum-B-Zellen ab, und auch die LP-Zellen zeigen zahlreiche Keimzentrummerkmale. HRS-Zellen zeichnen sich durch eine Herabregulation des B-Zell-Phänotyps und eine Aktivierung zahlreicher potenter Signaltransduktionswege aus. Dazu zählen die konstitutive NFκB-Aktivierung, die JAK/STAT- und PI3K-Kaskaden sowie eine gesteigerte Expression antiapoptotischer Moleküle. Mit der kürzlichen Entdeckung von inaktivierenden Mutationen im TNFAIP3-Gen (A20) in ca. 40% aller klassischen Hodgkin-Lymphome scheint die NFκB-Signalkaskade eine zentrale Stellung in der Pathogenese einzunehmen.

Abstract

Hodgkin’s lymphoma comprises nodular lymphocyte-predominant Hodgkin’s lymphoma and classical Hodgkin’s lymphoma which are considered to be separate disease entities. The new WHO classification maintains the previously recognized subtypes of classical Hodgkin’s lymphoma which include the nodular sclerosis subtype, the mixed cellularity subtype and the lymphocyte-rich and lymphocyte-depleted subtypes. The tumor cells in classical Hodgkin’s lymphoma are the Hodgkin-Reed-Sternberg (HRS) cells, whereas LP cells are characteristic for nodular lymphocyte-predominant Hodgkin’s lymphoma. HRS cells are probably derived from pre-apoptotic germinal center B cells and LP cells also show many features of germinal center derivation. HRS cells are characterized by downregulation of the B cell expression program and activation of several potent signaling pathways. These include constitutive activation of NFκB, JAK/STAT and PI3 K signaling cascades as well as an increased expression of anti-apoptotic molecules. The recent identification of inactivating mutations of the TNFAIP3 gene coding for A20 in approximately 40% of classical Hodgkin’s lymphoma seems to indicate a central role for the NFκB cascade in the pathogenesis of this neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Swerdlow SH, Campo E, Harris Nl et al (2008) Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon

  2. Nam-Cha SH, Roncador G, Sanchez-Verde L et al (2008) PD-1, a follicular T-cell marker useful for recognizing nodular lymphocyte-predominant Hodgkin lymphoma. Am J Surg Pathol 32:1252–1257

    Article  PubMed  Google Scholar 

  3. Müschen M, Rajewsky K, Bräuninger A et al (2000) Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med 191:387–394

    Article  PubMed  Google Scholar 

  4. Seitz V, Hummel M, Marafioti T et al (2000) Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood 95:3020–3024

    CAS  PubMed  Google Scholar 

  5. Mani H, Jaffe ES (2009) Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma 9:206–216

    Article  PubMed  Google Scholar 

  6. Kanzler H, Küppers R, Hansmann Ml et al (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184:1495–1505

    Article  CAS  PubMed  Google Scholar 

  7. Küppers R, Rajewsky K, Zhao M et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A 91:10962–10966

    Article  PubMed  Google Scholar 

  8. Küppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27

    Article  PubMed  Google Scholar 

  9. Jones RJ, Gocke CD, Kasamon Yl et al (2009) Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood 113:5920–5926

    Article  CAS  PubMed  Google Scholar 

  10. Küppers R (2009) Clonogenic B cells in classic Hodgkin lymphoma. Blood (in press)

  11. Martin-Subero JI, Klapper W, Sotnikova A et al (2006) Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Cancer Res 66:10332–10338

    Article  CAS  PubMed  Google Scholar 

  12. Wlodarska I, Nooyen P, Maes B et al (2003) Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 101:706–710

    Article  CAS  PubMed  Google Scholar 

  13. Kato M, Sanada M, Kato I et al (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459:712–716

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz R, Hansmann Ml, Bohle V et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206:981–989

    Article  CAS  PubMed  Google Scholar 

  15. Brune V, Tiacci E, Pfeil I et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205:2251–2268

    Article  CAS  PubMed  Google Scholar 

  16. Schumacher MA, Schmitz R, Brune V et al (2009) Mutations in the genes coding for the NF-{kappa}B regulating factors I{kappa}B{alpha} and A20 are uncommon in nodular lymphocyte-predominant Hodgkin lymphoma. Haematologica:early online

  17. Mottok A, Renné C, Willenbrock K et al (2007) Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110:3387–3390

    Article  CAS  PubMed  Google Scholar 

  18. Weniger MA, Melzner I, Menz CK et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684

    Article  CAS  PubMed  Google Scholar 

  19. Schwering I, Bräuninger A, Klein U et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512

    Article  CAS  PubMed  Google Scholar 

  20. Mathas S, Janz M, Hummel F et al (2006) Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 7:207–215

    Article  CAS  PubMed  Google Scholar 

  21. Renné C, Martin-Subero JI, Eickernjager M et al (2006) Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol 169:655–664

    Article  PubMed  Google Scholar 

  22. Jundt F, Acikgoz O, Kwon SH et al (2008) Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia

  23. Ushmorov A, Leithäuser F, Sakk O et al (2005) Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 107:2493–2500

    Article  PubMed  Google Scholar 

  24. Renné C, Willenbrock K, Küppers R et al (2005) Autocrine and paracrine activated receptor tyrosine kinases in classical Hodgkin lymphoma. Blood 105:4051–4059

    Article  PubMed  Google Scholar 

  25. Dutton A, Reynolds GM, Dawson CW et al (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205:498–506

    Article  CAS  PubMed  Google Scholar 

  26. Zheng B, Fiumara P, Li YV et al (2003) MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 102:1019–1027

    Article  CAS  PubMed  Google Scholar 

  27. Dutton A, O’neil JD, Milner AE et al (2004) Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A 101:6611–6616

    Article  CAS  PubMed  Google Scholar 

  28. Mathas S, Lietz A, Anagnostopoulos I et al (2004) c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med 199:1041–1052

    Article  CAS  PubMed  Google Scholar 

  29. Chu WS, Aguilera NS, Wei MQ et al (1999) Antiapoptotic marker Bcl-X(L), expression on Reed-Sternberg cells of Hodgkin’s disease using a novel monoclonal marker, YTH-2H12. Hum Pathol 30:1065–1070

    Article  CAS  PubMed  Google Scholar 

  30. Kashkar H, Haefs C, Shin H et al (2003) XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med 198:341–347

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rosenwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenwald, A., Küppers, R. Pathologie und molekulare Pathologie des Hodgkin-Lymphoms. Onkologe 16, 9–17 (2010). https://doi.org/10.1007/s00761-009-1771-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-009-1771-4

Schlüsselwörter

Keywords

Navigation