Skip to main content

Advertisement

Log in

Tamoxifen metabolite endoxifen interferes with the polyamine pathway in breast cancer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tamoxifen is the most widely used drug to treat women with estrogen receptor α (ERα)-positive breast cancer. Endoxifen is recognized as the active metabolite of tamoxifen in humans. We studied endoxifen effects on ERα-positive MCF-7 breast cancer cells. Estradiol increased the proliferation of MCF-7 cells by two- to threefold and endoxifen suppressed its effects. Endoxifen suppressed c-myc, c-fos and Tff1 oncogene expression, as revealed by RT-PCR. Estradiol increased the activity of ornithine decarboxylase (ODC) and adenosyl methioninedecarboxylase (AdoMetDC), whereas endoxifen suppressed these enzyme activities. Endoxifen increased activities of spermine oxidase (SMO) and acetyl polyamine oxidase (APAO) significantly, and reduced the levels of putrescine and spermidine. These data suggest a possible mechanism for the antiestrogenic effects of tamoxifen/endoxifen, involving the stimulation of polyamine oxidase enzymes. Therefore, SMO and APAO stimulation might be useful biomarkers for the efficacy of endoxifen treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AdoMetDC:

S-adenosyl-l-methionine decarboxylase

APAO:

Acetyl polyamine oxidase

CYP:

Cytochrome P450

DCC:

Dextran coated charcoal

DMEM:

Dulbecco’s modified Eagle’s medium

Endo:

Endoxifen

E2 :

Estradiol

ER:

Estrogen receptor

FBS:

Fetal bovine serum

4HT:

4-Hydroxytamoxifen

ODC:

Ornithine decarboxylase

qPCR:

Quantitative polymerase chain reaction

SMO:

Spermine oxidase

SSAT:

Spermidine/spermine N1-acetyltransferase

STR:

Short tandem repeat

References

  • Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010a) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, Toninello A, Stevanato R (2010b) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38:353–368

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Vianello F, Magliulo G, Thomas T, Thomas TJ (2015) Nanoparticle strategies for cancer therapeutics: nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles. Int J Oncol 46:5–16

    CAS  PubMed  Google Scholar 

  • Amendola R, Cervelli M, Fratini E, Sallustio DE, Tempera G, Ueshima T, Mariottini P, Agostinelli E (2013) Reactive oxygen species spermine metabolites generated from amine oxidases and radiation represent a therapeutic gain in cancer treatments. Int J Oncol 43:813–820

    CAS  PubMed  Google Scholar 

  • Arun B, Dunn BK, Ford LG, Ryan A (2010) Breast cancer prevention trials: large and small trials. Semin Oncol 37:367–383

    Article  PubMed  Google Scholar 

  • Balabhadrapathruni S, Santhakumaran LM, Thomas TJ, Shirahata A, Gallo MA, Thomas T (2005) Bis(ethyl)norspermine potentiates the apoptotic activity of the pure antiestrogen ICI 182780 in breast cancer cells. Oncol Rep 13:101–108

    CAS  PubMed  Google Scholar 

  • Battaglia V, DeStefano Shields C, Murray-Stewart T, Casero RA Jr (2014) Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids 46(3):511–5119

    Article  CAS  PubMed  Google Scholar 

  • Binkhorst L, Mathijssen RH, Jager A, van Gelder T (2015) Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev 41:289–299

    Article  CAS  PubMed  Google Scholar 

  • Borgna JL, Rochefort H (1981) Hydroxylated metabolites of tamoxifen are formed in vivo and bound to estrogen receptor in target tissues. J Biol Chem 256:859–868

    CAS  PubMed  Google Scholar 

  • Bourassa P, Dubeau S, Maharvi GM, Fauq AH, Thomas TJ, Tajmir-Riahi HA (2011a) Binding of antitumor tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen to human serum albumin. Biochimie 93:1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Bourassa P, Dubeau S, Maharvi GM, Fauq AH, Thomas TJ, Tajmir-Riahi HA (2011b) Locating the binding sites of anticancer tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen on bovine serum albumin. Eur J Med Chem 46:4344–4353

    Article  CAS  PubMed  Google Scholar 

  • Bourassa P, Thomas TJ, Tajmir-Riahi HA (2014) Locating the binding sites of antitumor drug tamoxifen and its metabolites with DNA. J Pharm Biomed Anal 95:193–199

    Article  CAS  PubMed  Google Scholar 

  • Bourassa P, Thomas TJ, Bariyanga J, Tajmir-Riahi HA (2015) Breast anticancer drug tamoxifen and its metabolites bind tRNA at multiple sites. Int J Biol Macromol 72:692–698

    Article  CAS  PubMed  Google Scholar 

  • Briest S, Stearns V (2009) Tamoxifen metabolism and its effect on endocrine treatment of breast cancer. Clin Adv Hematol Oncol 7:185–192

    PubMed  Google Scholar 

  • Brown AM, Jeltsch JM, Roberts M, Chambon P (1984) Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci USA 81:6344–6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casero RA Jr, Wang Y, Stewart TM, Devereux W, Hacker A, Wang Y, Smith R, Woster PM (2003) The role of polyamine catabolism in anti-tumour drug response. Biochem Soc Trans 31:361–365

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Amendola R, Polticelli F, Mariottini P (2012) Spermine oxidase: 10 years after. Amino Acids 42:441–450

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Pietropaoli S, Signore F, Amendola R, Mariottini P (2014) Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 148:233–248

    Article  CAS  PubMed  Google Scholar 

  • Coezy E, Borgna JL, Rochefort H (1982) Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 42:317–323

    CAS  PubMed  Google Scholar 

  • Cohen FJ, Manni A, Glikman P, Bartholomew M, Demers L (1988) Involvement of the polyamine pathway in antiestrogen-induced growth inhibition of human breast cancer. Cancer Res 48:6819–6825

    CAS  PubMed  Google Scholar 

  • Cronin-Fenton DP, Damkier P, Lash TL (2014) Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol 10:107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson NE, Hahm HA, McCloskey DE, Woster PM, Casero RA Jr (1999) Clinical aspects of cell death in breast cancer: the polyamine pathway as a new target for treatment. Endocr Relat Cancer 6:69–73

    Article  CAS  PubMed  Google Scholar 

  • Dirks WG, Drexler HG (2013) STR DNA typing of human cell lines: detection of intra- and interspecies cross-contamination. Methods Mol Biol 946:27–38

    Article  CAS  PubMed  Google Scholar 

  • Dubik D, Dembinski TC, Shiu RP (1987) Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 47:6517–6521

    CAS  PubMed  Google Scholar 

  • Faaland CA, Thomas TJ, Balabhadrapathruni S, Langer T, Mian S, Shirahata A, Gallo MA, Thomas T (2000) Molecular correlates of the action of bis(ethyl)polyamines in breast cancer cell growth inhibition and apoptosis. Biochem Cell Biol 78:415–426

    Article  CAS  PubMed  Google Scholar 

  • Fauq AH, Maharvi GM, Sinha D (2010) A convenient synthesis of (Z)-4-hydroxy-N-desmethyltamoxifen (endoxifen). Bioorg Med Chem Lett 20:3036–3038

    Article  CAS  PubMed  Google Scholar 

  • Gee AC, Carlson KE, Martini PGV, Katzenellenbogen BS, Katzenellenbogen JA (1999) Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with theestrogen receptor. Mol Endocrinol 13:1912–1923

    Article  CAS  PubMed  Google Scholar 

  • Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: From concept to therapeutic targeting. Mol Interventions 5:343–357

    Article  Google Scholar 

  • Hawse JR, Subramaniam M, Cicek M, Wu X, Gingery A, Grygo SB, Sun Z, Pitel KS, Lingle WL, Goetz MP, Ingle JN, Spelsberg TC (2013) Endoxifen’s molecular mechanisms of action are concentration dependent and different than that of other anti-estrogens. PLoS One 8:e54613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helland T, Gjerde J, Dankel S, Fenne IS, Skartveit L, Drangevåg A, Bozickovic O, Flågeng MH, Søiland H, Mellgren G, Lien EA (2015) The active tamoxifen metabolite endoxifen (4OHNDtam) strongly down-regulates cytokeratin 6 (CK6) in MCF-7 breast cancer cells. PLoS One 10:e0122339

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennig EE, Piatkowska M, Karczmarski J, Goryca K, Brewczynska E, Jazwiec R, Kluska A, Omiotek R, Paziewska A, Dadlez M, Ostrowski J (2015) Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer. BMC Cancer 15:570

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertz DL, McLeod HL, Irvin WJ Jr (2012) Tamoxifen and CYP2D6: a contradiction of data. Oncologist 17:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins MJ, Stearns V (2010) CYP2D6 polymorphisms and tamoxifen metabolism: clinical relevance. Curr Oncol Rep 12:7–15

    Article  CAS  PubMed  Google Scholar 

  • Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9:576–586

    Article  CAS  PubMed  Google Scholar 

  • Hyvönen MT, Howard MT, Anderson CB, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J, Keinänen TA (2009) Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogs. Biochem J 422:321–328

    Article  PubMed  Google Scholar 

  • Jager NG, Linn SC, Schellens JH, Beijnen JH (2015) Tailored tamoxifen treatment for breast cancer patients: a perspective. Clin Breast Cancer 15:241–244

    Article  CAS  PubMed  Google Scholar 

  • John S, Nayvelt I, Hsu HC, Yang P, Liu W, Das GM, Thomas T, Thomas TJ (2008) Regulation of estrogenic effects by beclin 1 in breast cancer cells. Cancer Res 68:7855–7863

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85:151–159

    Article  CAS  PubMed  Google Scholar 

  • Jordan VC (2007) New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids 72:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan VC (2014) Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr Relat Cancer 21:R235–R246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan VC, Allen KE, Dix CJ (1980) Pharmacology of tamoxifen in laboratory animals. Cancer Treat Rep 64:745–759

    CAS  PubMed  Google Scholar 

  • Kiyotani K, Mushiroda T, Nakamura Y, Zembutsu H (2012) Pharmacogenomics of tamoxifen: roles of drug metabolizing enzymes and transporters. Drug Metab Pharmacokinet 27:122–131

    Article  CAS  PubMed  Google Scholar 

  • Kurebayashi J, Nukatsuka M, Nagase H, Nomura T, Hirono M, Yamamoto Y, Sugimoto Y, Oka T, Sonoo H (2007) Additive antitumor effect of concurrent treatment of 4-hydroxy tamoxifen with 5-fluorouracil but not with doxorubicin in estrogen receptor-positive breast cancer cells. Cancer Chemother Pharmacol 59:515–525

    Article  CAS  PubMed  Google Scholar 

  • Lessard M, Zhao C, Singh SM, Poulin R (1995) Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J Biol Chem 270:1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Levenson AS, Jordan VC (1999) Selective oestrogen receptor modulation: molecular pharmacology for the millennium. Eur J Cancer 35:1628–1639

    Article  CAS  PubMed  Google Scholar 

  • Levin ER (2014) Extranuclear estrogen receptor’s roles in physiology: lessons from mouse models. Am J Physiol Endocrinol Metab 307:E133–E140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JS, Thomas TJ, Shirahata A, Thomas T (2000) Self-assembly of an oligodeoxyribonucleotide harboring the estrogen response element in the presence of polyamines: ionic, structural, and DNA sequence specificity effects. Biomacromolecules 1:339–349

    Article  CAS  PubMed  Google Scholar 

  • Libby PR (1978) Calf liver nuclear N-acetyltransferases. Purification and properties of two enzymes with both spermidine acetyltransferase and histone acetyltransferase activities. J Biol Chem 253:23323–23327

    Google Scholar 

  • Lien EA, Solheim E, Kvinnsland S, Ueland PM (1988) Identification of 4-hydroxy-N-desmethyltamoxifen as a metabolite of tamoxifen in human bile. Cancer Res 48:2304–2308

    CAS  PubMed  Google Scholar 

  • Lien EA, Solheim E, Ueland PM (1991) Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res 51:4837–4844

    CAS  PubMed  Google Scholar 

  • Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxytamoxifen. Cancer Chemother Pharmacol 55:471–478

    Article  CAS  PubMed  Google Scholar 

  • Lim YC, Li L, Desta Z, Zhao Q, Rae JM, Flockhart DA, Skaar TC (2006) Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther 318:503–512

    Article  CAS  PubMed  Google Scholar 

  • Lima G, Shiu RP (1985) Role of polyamines in estradiol-induced growth of human breast cancer cells. Cancer Res 45:2466–2470

    CAS  PubMed  Google Scholar 

  • Manni A (1994) The role of polyamines in the hormonal control of breast cancer cell proliferation. Cancer Treat Res 71:209–225

    Article  CAS  PubMed  Google Scholar 

  • Markopoulos C, Kykalos S, Mantas D (2014) Impact of CYP2D*6 in the adjuvant treatment of breast cancer patients with tamoxifen. World J Clin Oncol 5:374–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Maximov PY, Myers CB, Curpan RF, Lewis-Wambi JS, Jordan VC (2010) Structure-function relationships of estrogenic triphenylethylenes related to endoxifen and 4-hydroxytamoxifen. J Med Chem 53:3273–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maximov PY, Lee TM, Jordan VC (2013) The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr Clin Pharmacol 8:135–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonnell DP, Wardell SE (2010) The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol 10:620–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melamed M, Arnold SF, Notides AC, Sasson S (1996) Kinetic analysis of the interaction of human estrogen receptor with an estrogen response element. J Steroid Biochem Mol Biol 57:153–159

    Article  CAS  PubMed  Google Scholar 

  • Mürdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, Fasching PA, Fehm T, German Tamoxifen and AI Clinicians Group, Eichelbaum M, Schwab M, Brauch H (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89:708–717

    Article  PubMed  Google Scholar 

  • Nadal-Serrano M, Sastre-Serra J, Pons DG, Miró AM, Oliver J, Roca P (2012) The ERalpha/ERbeta ratio determines oxidative stress in breast cancer cell lines in response to 17beta-estradiol. J Cell Biochem 113:3178–3185

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Verma A, Thomas TJ, Chou TC, Gallo MA, Shirahata A, Thomas T (2007) Synergistic apoptosis of MCF-7 breast cancer cells by 2-methoxyestradiol and bis(ethyl)norspermine. Cancer Lett 250:311–322

    Article  CAS  PubMed  Google Scholar 

  • Nayvelt I, John S, Hsu HC, Yang P, Liu W, Das G, Hyvönen MT, Alhonen L, Keinänen TA, Shirahata A, Patel R, Thomas T, Thomas TJ (2012) A potential estrogen mimetic effect of a bis(ethyl)polyamine analogue on estrogen receptor positive MCF-7 breast cancer cells. Amino Acids 42:899–911

    Article  CAS  PubMed  Google Scholar 

  • Nowotarski SL, Woster PM, Casero RA Jr (2013) Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Paruthiyil S, Cvoro A, Zhao S, Wu Z, Sui Y, Staub RE, Bhaggatt S, Herber CB, Griffin C, Tagliaferri M, Harris HA, Cohen I, Bejeldanes LF, Speed TP, Schaufele F, Leitman UC (2009) Drug and cell-type specific regulation of genes with different classes of estrogen receptor beta-selective agonists. PLoS One 4(7):e6271

    Article  PubMed  PubMed Central  Google Scholar 

  • Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RA Jr (2005) Spermine oxidase SMO (PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280:39843–39851

    Article  CAS  PubMed  Google Scholar 

  • Punglia RS, Burstein HJ, Winer EP, Weeks JC (2008) Pharmacogenomic variation of CYP2D6 and the choice of optimal adjuvant endocrine therapy for postmenopausal breast cancer: a modeling analysis. J Natl Cancer Inst 100:642–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruddy KJ, Desantis SD, Gelman RS, Wu AH, Punglia RS, Mayer EL, Tolaney SM, Winer EP, Partridge AH, Burstein HJ (2013) Personalized medicine in breast cancer: tamoxifen, endoxifen, and CYP2D6 in clinical practice. Breast Cancer Res Treat 141:421–427

    Article  CAS  PubMed  Google Scholar 

  • Russo IH, Russo J (1998) Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 3:49–61

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Thomas TJ, Lewis JS, Klinge CM, Shirahata A, Gelinas C, Thomas T (2001) Regulation of estrogenic and nuclear factor kappa B functions by polyamines and their role in polyamine analog-induced apoptosis of breast cancer cells. Oncogene 20(14):1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Spencer TE, Oñate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW (1997) Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52:141–164

    CAS  PubMed  Google Scholar 

  • Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV (2012) Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 94:1876–1883

    Article  CAS  PubMed  Google Scholar 

  • Stender JD, Kim K, Charn TH, Komm B, Chang KCN, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS (2010) Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30:3943–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2004) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  Google Scholar 

  • Thomas T, Thomas TJ (1994) Estradiol control of ornithine decarboxylase mRNA, enzyme activity, and polyamine levels in MCF-7 breast cancer cells: therapeutic implications. Breast Cancer Res Treat 29:189–201

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (2003) Polyamine metabolism and cancer. J Cell Mol Med 7:113–126

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Trend B, Butterfield JR, Jänne OA, Kiang DT (1989) Regulation of ornithine decarboxylase gene expression in MCF-7 breast cancer cells by antiestrogens. Cancer Res 49:5852–5857

    CAS  PubMed  Google Scholar 

  • Thomas T, Kulkarni GD, Gallo MA, Greenfield N, Lewis JS, Shirahata A, Thomas TJ (1997) Effects of natural and synthetic polyamines on the conformation of an oligodeoxyribonucleotide with the estrogen response element. Nucleic Acids Res 25:2396–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T, Balabhadrapathruni S, Gallo MA, Thomas TJ (2002) Development of polyamine analogs as cancer therapeutic agents. Oncol Res 13:123–135

    CAS  PubMed  Google Scholar 

  • Thomas T, Gallo MA, Thomas TJ (2004) Estrogen receptors as targets for drug development for breast cancer, osteoporosis and cardiovascular diseases. Curr Cancer Drug Targets 4:483–499

    Article  CAS  PubMed  Google Scholar 

  • Vijayanathan V, Thomas TJ, Nair SK, Shirahata A, Gallo MA, Thomas T (2006a) Bending of the estrogen response element by polyamines and estrogen receptors alpha and beta: a fluorescence resonance energy transfer study. Int J Biochem Cell Biol 38:1191–1206

    Article  CAS  PubMed  Google Scholar 

  • Vijayanathan V, Venkiteswaran S, Nair SK, Verma A, Thomas TJ, Zhu BT, Thomas T (2006b) Physiologic levels of 2-methoxyestradiol interfere with nongenomic signaling of 17β-estradiol in human breast cancer cells. Clin Cancer Res 12:2038–2048

    Article  CAS  PubMed  Google Scholar 

  • Vijayanathan V, Agostinelli E, Thomas T, Thomas TJ (2014) Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy. Amino Acids 46:499–509

    Article  CAS  PubMed  Google Scholar 

  • Weisell J, Hyvönen MT, Häkkinen MR, Grigorenko NA, Pietilä M, Lampinen A, Kochetkov SN, Alhonen L, Vepsäläinen J, Keinänen TA, Khomutov A (2010) Synthesis and biological characterization of novel charge-deficient spermine analogues. J Med Chem 53:5738–5748

    Article  CAS  PubMed  Google Scholar 

  • Wilding G, Lippman ME, Gelmann EP (1988) Effects of steroid hormones and peptide growth factors on protooncogene c-fos expression in human breast cancer cells. Cancer Res 48:802–805

    CAS  PubMed  Google Scholar 

  • Wu X, Hawse JR, Subramaniam M, Goetz MP, Ingle JN, Spelsberg TC (2009) The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 69:1722–1727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Dr. Abdul Fauq of the Mayo Clinic Florida for supplying the purified form of (Z)-endoxifen for this work. This work was supported, in part, by a grant (PC28-11) from the Foundation of the University of Medicine and Dentistry of New Jersey (Currently NJ Health Foundation) to TJT. Work in the laboratories of TAK and MTH was supported by the strategic funding of the University of Eastern Finland and grants from the Academy of Finland (Grant no. 266196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This research did not involve the participation of human subjects. No animals were also used.

Additional information

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, T.J., Thomas, T., John, S. et al. Tamoxifen metabolite endoxifen interferes with the polyamine pathway in breast cancer. Amino Acids 48, 2293–2302 (2016). https://doi.org/10.1007/s00726-016-2300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2300-6

Keywords

Navigation