Skip to main content

Advertisement

Log in

Destabilization of the ornithine decarboxylase mRNA transcript by the RNA-binding protein tristetraprolin

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. In a normal physiological state, ODC is tightly regulated. However, during neoplastic transformation, ODC expression becomes upregulated. The studies described here show that the ODC mRNA transcript is destabilized by the RNA-binding protein tristetraprolin (TTP). We show that TTP is able to bind to the ODC mRNA transcript in both non-transformed RIE-1 cells and transformed Ras12V cells. Moreover, using mouse embryonic fibroblast cell lines that are devoid of a functional TTP protein, we demonstrate that in the absence of TTP both ODC mRNA stability and ODC enzyme activity increase when compared to wild-type cells. Finally, we show that the ODC 3′ untranslated region contains cis acting destabilizing elements that are affected by, but not solely dependent on, TTP expression. Together, these data support the hypothesis that TTP plays a role in the post-transcriptional regulation of the ODC mRNA transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auvinen M et al (2003) Transcriptional regulation of the ornithine decarboxylase gene by c-Myc/Max/Mad network and retinoblastoma protein interacting with c-Myc. Int J Biochem Cell Biol 35:496–521

    Article  CAS  PubMed  Google Scholar 

  • Bello-Fernandez C, Packham G, Cleveland JL (1993) The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 90:7804–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin D, Moroni C (2007) mRNA stability and cancer: an emerging link? Expert Opin Biol Ther 7:1515–1529. doi:10.1517/14712598.7.10.1515

    Article  CAS  PubMed  Google Scholar 

  • Blaxall BC, Dwyer-Nield LD, Bauer AK, Bohlmeyer TJ, Malkinson AM, Port JD (2000) Differential expression and localization of the mRNA binding proteins, AU-rich element mRNA binding protein (AUF1) and Hu antigen R (HuR), in neoplastic lung tissue. Mol Carcinog 28:76–83

    Article  CAS  PubMed  Google Scholar 

  • Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176. doi:10.1158/0008-5472.CAN-08-4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer BY, Malicka J, Blackshear PJ, Wilson GM (2004) RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of Au-rich MRNA-destabilizing motifs. J Biol Chem 279:27870–27877. doi:10.1074/jbc.M402551200

    Article  CAS  PubMed  Google Scholar 

  • Brooks SA, Blackshear PJ (2013) Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 1829:666–679. doi:10.1016/j.bbagrm.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballo E, Lai WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95:1891–1899

    CAS  PubMed  Google Scholar 

  • Carr TD, DiGiovanni J, Lynch CJ, Shantz LM (2012) Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 5:1394–1404. doi:10.1158/1940-6207.CAPR-12-0272-T

    Article  CAS  Google Scholar 

  • Coleman CS, Pegg AE (eds) (1998) Assay of mammalian ornithine decarboxylase activity using [14C]-ornithine vol 79. Polyamine protocols. Humana Press Inc., Totowa

    Google Scholar 

  • Erdman SH, Ignatenko NA, Powell MB, Blohm-Mangone KA, Holubec H, Guillen-Rodriguez JM, Gerner EW (1999) APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 20:1709–1713

    Article  CAS  PubMed  Google Scholar 

  • Feith DJ, Bol DK, Carboni JM, Lynch MJ, Sass-Kuhn S, Shoop PL, Shantz LM (2005) Induction of ornithine decarboxylase activity is a necessary step for mitogen-activated protein kinase kinase-induced skin tumorigenesis. Cancer Res 65:572–578

    CAS  PubMed  Google Scholar 

  • Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20:905–915. doi:10.1016/j.molcel.2005.10.031

    Article  CAS  PubMed  Google Scholar 

  • Gardiner AS, Twiss JL, Perrone-Bizzozero NI (2015) Competing interactions of RNA-binding proteins, microRNAs, and their targets control neuronal development and function. Biomolecules 5:2903–2918. doi:10.3390/biom5042903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792. doi:10.1038/nrc1454

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SK (2007) Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 224:249–256. doi:10.1016/j.taap.2006.11.023

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SK, Avdalovic N, Madara T, O’Brien TG (1985) Induction of ornithine decarboxylase by 12-O-tetradecanoylphorbol 13-acetate in hamster fibroblasts. Relationship between levels of enzyme activity, immunoreactive protein, and RNA during the induction process. J Biol Chem 260:16439–16444

    CAS  PubMed  Google Scholar 

  • Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265:11–23

    Article  CAS  PubMed  Google Scholar 

  • Ishmael FT et al (2008) Role of the RNA-binding protein tristetraprolin in glucocorticoid-mediated gene regulation. J Immunol 180:8342–8353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedersha N et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884. doi:10.1083/jcb.200502088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19:4311–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ (2006) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 26:9196–9208. doi:10.1128/MCB.00945-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M (2004) Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 23:3092–3102. doi:10.1038/sj.emboj.7600305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HH, Son YJ et al (2009) Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer 126:1817–1827

    Google Scholar 

  • Lopez de Silanes I, Quesada MP, Esteller M (2007) Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 29:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ming XF, Stoecklin G, Lu M, Looser R, Moroni C (2001) Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 21:5778–5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowotarski SL, Shantz LM (2010) Cytoplasmic accumulation of the RNA-binding protein HuR stabilizes the ornithine decarboxylase transcript in a murine nonmelanoma skin cancer model. J Biol Chem 285:31885–31894. doi:10.1074/jbc.M110.148767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowotarski SL, Origanti S, Shantz LM (2011) Polyamines: methods and protocols vol 270. Methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Nowotarski SL, Woster PM, Casero RA Jr (2013) Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15:e3. doi:10.1017/erm.2013.3

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowotarski SL, Feith DJ, Shantz LM (2015) Skin carcinogenesis studies using mouse models with altered polyamines. Cancer Growth Metastasis 8:17–27. doi:10.4137/CGM.S21219

    PubMed  PubMed Central  Google Scholar 

  • O’Brien TG (1976) The induction of ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis. Cancer Res 36:2644–2653

    PubMed  Google Scholar 

  • Origanti S, Shantz LM (2007) Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. Cancer Res 67:4834–4842. doi:10.1158/0008-5472.CAN-06-4627

    Article  CAS  PubMed  Google Scholar 

  • Origanti S, Nowotarski SL, Carr TD, Sass-Kuhn S, Xiao L, Wang JY, Shantz LM (2012) Ornithine decarboxylase mRNA is stabilized in an mTORC1-dependent manner in Ras-transformed cells. Biochem J 442:199–207. doi:10.1042/BJ20111464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646. doi:10.1016/j.molcel.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    Article  CAS  PubMed  Google Scholar 

  • Rao JN, Wang JY (2010) In: Regulation of gastrointestinal mucosal growth. Morgan and Claypool Life Sciences, San Rafael, CA

  • Rounbehler RJ et al (2012) Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 150:563–574. doi:10.1016/j.cell.2012.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shantz LM (2004) Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem J 377:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shantz LM, Pegg AE (1999) Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Int J Biochem Cell Biol 31:107–122

    Article  CAS  PubMed  Google Scholar 

  • Smith MK, Goral MA, Wright JH, Matrisian LM, Morris RJ, Klein-Szanto AJ, Gilmour SK (1997) Ornithine decarboxylase overexpression leads to increased epithelial tumor invasiveness. Cancer Res 57:2104–2108

    CAS  PubMed  Google Scholar 

  • Stoecklin G, Ming XF, Looser R, Moroni C (2000) Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol Cell Biol 20:3753–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, Anderson P (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23:1313–1324. doi:10.1038/sj.emboj.7600163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suswam E et al (2008) Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res 68:674–682. doi:10.1158/0008-5472.CAN-07-2751

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA et al (1996a) A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4:445–454

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA, Thompson MJ, Lai WS, Blackshear PJ (1996b) Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol 10:140–146. doi:10.1210/mend.10.2.8825554

    CAS  PubMed  Google Scholar 

  • Wallon UM, Persson L, Heby O (1995) Regulation of ornithine decarboxylase during cell growth. Changes in the stability and translatability of the mRNA, and in the turnover of the protein. Mol Cell Biochem 146:39–44

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Butler AP (2001) Core promoter involvement in the induction of rat ornithine decarboxylase by phorbol esters. Mol Carcinog 32:92–99

    Article  CAS  PubMed  Google Scholar 

  • Zou T et al (2006) Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem 281:19387–19394. doi:10.1074/jbc.M602344200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was funded by Grants from the National Institutes of Health (CA142051 and ES19242 to LMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Nowotarski.

Ethics declarations

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experiments involving mice were carried out in compliance with the Guide for the Care and Use of Laboratory Animals, and protocols approved by the Animal Care and Use Committee of the Pennsylvania State University College of Medicine (Hershey, PA), the institution at which the studies were conducted.

Human participation

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowotarski, S.L., Origanti, S., Sass-Kuhn, S. et al. Destabilization of the ornithine decarboxylase mRNA transcript by the RNA-binding protein tristetraprolin. Amino Acids 48, 2303–2311 (2016). https://doi.org/10.1007/s00726-016-2261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2261-9

Keywords

Navigation