Skip to main content
Log in

Deuteration protects asparagine residues against racemization

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Racemization in proteins and peptides at sites of l-asparaginyl and l-aspartyl residues contributes to their spontaneous degradation, especially in the biological aging process. Amino acid racemization involves deprotonation of the alpha carbon and replacement of the proton in the opposite stereoconfiguration; this reaction is much faster for aspartate/asparagine than for other amino acids because these residues form a succinimide ring in which resonance stabilizes the carbanion resulting from proton loss. To determine if the replacement of the hydrogen atom on the alpha carbon with a deuterium atom might decrease the rate of racemization and thus stabilize polypeptides, we synthesized a hexapeptide, VYPNGA, in which the three carbon-bound protons in the asparaginyl residue were replaced with deuterium atoms. Upon incubation of this peptide in pH 7.4 buffer at 37 °C, we found that the rate of deamidation via the succinimide intermediate was unchanged by the presence of the deuterium atoms. However, the accumulation of the d-aspartyl and d-isoaspartyl-forms resulting from racemization and hydrolysis of the succinimide was decreased more than five-fold in the deuterated peptide over a 20 day incubation at physiological temperature and pH. Additionally, we found that the succinimide intermediate arising from the degradation of the deuterated asparaginyl peptide was slightly less likely to open to the isoaspartyl configuration than was the protonated succinimide. These findings suggest that the kinetic isotope effect resulting from the presence of deuteriums in asparagine residues can limit the accumulation of at least some of the degradation products that arise as peptides and proteins age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Fmoc:

Fluorenylmethyloxycarbonyl

KIE:

Kinetic isotope effects

Trt:

Triphenylmethyl

References

  • Albericio F (2000) Solid-phase synthesis: a practical guide, 1st edn. CRC Press, Boca Raton, p 848. ISBN 0-8247-0359-6

    Google Scholar 

  • Andreyev AY, Tsui HS, Milne GL, Shmanai VV, Bekish AV, Fomich MA, Pham MN, Nong Y, Murphy AN, Clarke CF, Shchepinov MS (2015) Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radic Biol Med 82:63–72. doi:10.1016/j.freeradbiomed.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  • Aswad DW (1984a) Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25. Evidence for methylation at the alpha-carboxyl group of atypical l-isoaspartyl residues. J Biol Chem 259:10714–10721

    CAS  PubMed  Google Scholar 

  • Aswad DW (1984b) Determination of D- and L-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal Biochem 137(2):405–409

    Article  CAS  PubMed  Google Scholar 

  • Bada JL (1983) In vivo racemization in mammalian proteins. Methods Enzymol 106:98–115

    Article  Google Scholar 

  • Brunauer LS, Clarke S (1986) Age-dependent accumulation of protein residues which can be hydrolyzed to d-aspartic acid in human erythrocytes. J Biol Chem 261(27):12538–12543

    CAS  PubMed  Google Scholar 

  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794

    CAS  PubMed  Google Scholar 

  • Helfman PM, Bada JL (1975) Aspartic acid racemization in tooth enamel from living humans. Proc Natl Acad Sci USA 72(8):2891–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV, Bekish AV, Awad AM, Marbois BN, Cantor CR, Porter NA, Clarke CF, Shchepinov MS (2012) Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic Biol Med 53(4):893–906. doi:10.1016/j.freeradbiomed.2012.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooi MY, Truscott RJ (2011) Racemisation and human cataract. D-Ser, D-Asp/Asn and D-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. Age (Dordr) 33(2):131–141. doi:10.1007/s11357-010-9171-7

    Article  CAS  Google Scholar 

  • Hooi MY, Raftery MJ, Truscott RJ (2012) Racemization of two proteins over our lifespan: deamidation of asparagine 76 in γS crystallin is greater in cataract than in normal lenses across the age range. Invest Ophthalmol Vis Sci 53(7):3554–3561. doi:10.1167/iovs.11-9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Hosaka D, Mochizuki N, Akatsu H, Tsutsumiuchi K, Hashizume Y, Matsukawa N, Yamamoto T, Toyo’oka T (2014) Simultaneous determination of post-translational racemization and isomerization of N-terminal amyloid-β in Alzheimer’s brain tissues by covalent chiral derivatized ultraperformance liquid chromatography tandem mass spectrometry. Anal Chem 86:797–804

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Moulton KR, Auclair JR, Zhou ZS (2016) Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5. Amino Acids 48:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Lowenson JD, Clarke S (1992) Recognition of d-aspartyl residues in polypeptides by the erythrocyte l-isoaspartyl/d-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem 267(9):5985–5995

    CAS  PubMed  Google Scholar 

  • Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6(11):903–918

    Article  CAS  PubMed  Google Scholar 

  • Masters PM, Bada JL, Zigler JS (1977) Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268(5615):71–73

    Article  CAS  PubMed  Google Scholar 

  • Murray ED Jr, Clarke S (1984) Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase: detection of a new site of methylation at isomerized L-aspartyl residues. J Biol Chem 259:10722–10732

    CAS  PubMed  Google Scholar 

  • Ohtani S, Yamamoto T (2010) Age estimation by amino acid racemization in human teeth. J Forensic Sci 55:1630–1633

    Article  PubMed  Google Scholar 

  • Ohtani S, Yamada Y, Yamamoto T, Arany S, Gonmori K, Yoshioka N (2004) Comparison of age estimated from degree of racemization of aspartic acid, glutamic acid and alanine in the femur. J Forensic Sci 49(3):441–445

    Article  CAS  PubMed  Google Scholar 

  • Patananan AN, Capri J, Whitelegge JP, Clarke SG (2014) Non-repair pathways for mimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae. J Biol Chem 289:16936–16953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radkiewicz JL, Zipse H, Clarke S, Houk KN (1996) Accelerated racemization of aspartic acid and asparagine residues via succinimide intermediates: an ab initio theoretical exploration of mechanism. J Am Chem Soc 118(38):9148–9155. doi:10.1021/ja953505b

    Article  CAS  Google Scholar 

  • Ritz-Timme S, Collins MJ (2002) Racemization of aspartic acid in human proteins. Ageing Res Rev 1(1):43–59

    Article  CAS  PubMed  Google Scholar 

  • Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zürcher-Neely HA, Heinrikson RL, Ball MJ, Greenberg BD (1993a) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268(5):3072–3083

    CAS  PubMed  Google Scholar 

  • Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993b) Beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA 90(22):10836–10840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shchepinov MS (2007) Reactive oxygen species, isotope effect, essential nutrients, and enhanced longevity. Rejuven Res 10:47–59

    Article  CAS  Google Scholar 

  • Shchepinov MS, Pestov NB (2010) Isotope effect, essential diet components, and prospects of aging retardation. Rus J Gen Chem 80:1514–1522

    Article  CAS  Google Scholar 

  • Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264(11):6164–6170

    CAS  PubMed  Google Scholar 

  • Tambo K, Yamaguchi T, Kobayashi K, Terauchi E, Ichi I, Kojo S (2013) Racemization of the aspartic acid residue of amyloid-beta peptide by a radical reaction. Biosci Biotechnol Biochem 77:416–418

    Article  CAS  PubMed  Google Scholar 

  • Truscott RJ, Friedrich MG (2016) The etiology of human age-related cataract. Proteins don’t last forever. Biochim Biophys Acta 1860(1 Pt B):192–198. doi:10.1016/j.bbagen.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  • Warmack RA, Mansilla E, Goya RG, Clarke SG (2016) Racemized and isomerized proteins in aging rat teeth and eye lens. Rejuven Res 19. (in press)

  • Westheimer FH (1961) The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium. Chem Rev 61:265–273

    Article  CAS  Google Scholar 

  • Young GW, Hoofring SA, Mamula MJ, Doyle HA, Bunick GJ, Hu Y, Aswad DW (2005) Protein l-isoaspartyl methyltransferase catalyzes in vivo racemization of aspartate-25 in mammalian histone H2B. J Biol Chem 280(28):26094–26098

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yip H, Katta V (2011) Identification of isomerization and racemization of aspartate in the Asp-Asp motifs of a therapeutic protein. Anal Biochem 410:234–243. doi:10.1016/j.ab.2010.11.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Life Extension Foundation, Inc., as well as by funds from the Elizabeth and Thomas Plott Chair in Gerontology of the UCLA Longevity Center, the National Institutes of Health Grant GM026020, and Retrotope, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven G. Clarke or Mikhail S. Shchepinov.

Ethics declarations

Conflict of interest

M S. Shchepinov declares a competing financial interest as the Chief Scientific Officer of Retrotope, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowenson, J.D., Shmanai, V.V., Shklyaruck, D. et al. Deuteration protects asparagine residues against racemization. Amino Acids 48, 2189–2196 (2016). https://doi.org/10.1007/s00726-016-2250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2250-z

Keywords

Navigation