Skip to main content
Log in

Effect of the external electric field on selected tripeptides

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The effect of external electric field (EEF) of 5.14, 25.70, and 51.40 MV/cm upon Cys-Asn-Ser, Glu-Arg-Leu, Glu-Cys-Glc, Ser-Asp-Leu, Ser-Glu-Met tripeptide inner salts was simulated involving HyperChem 8.0 software together with the AM1 method for optimization of the molecules’ conformation. The reaction to EEF is diverse and specific to particular peptides. EEF stimulated an increase in the positive charge density on the hydrogen atoms of the N+H3, peptide bond NH, NH2, and COOH groups as well decrease in the negative charge density on the oxygen atoms of the peptide bond carbonyl groups. Thus, EEF could control behavior and action of tripeptides, such as an increase in their catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aksoy H, Unal G, Ozcan S (2010) Genotoxic effects of electromagnetic fields from high voltage power lines on some plants. Int J Environ Res 4:595–606

    CAS  Google Scholar 

  • Ambroziak W, Pietruszko R (1993) Metabolic role of aldehyde dehydrogenase. Adv Exp Med Biol 328:5–15

    CAS  PubMed  Google Scholar 

  • Armstrong FA, Wilson GS (2000) Recent developments in faradaic bioelectrochemistry. Electrochim Acta 45:2623–2645

    Article  CAS  Google Scholar 

  • Bauer E, Berg H, Jacob H-E (1986) Electrostimulation of CO2-production in yeast cells. Stud Biophys 119:137–140

    Google Scholar 

  • Berry MN, Grivel AR, Phillips JW (1993) Hypothesis: the electrochemical regulation of metabolism. Pure Appl Chem 65:1957–1962

    Article  CAS  Google Scholar 

  • Bikiel DE, Boechi L, Crespo A et al (2006) Modeling heme proteins using atomistic simulations. Phys Chem Chem Phys 8:5611–5628

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary G, Kataya ARA, Lingner T, Reumann S (2012) Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis. BMC Plant Biol 12:142–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke RJ (2001) The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interface Sci 89:263–281

    Article  PubMed  Google Scholar 

  • Colazzio G, Pilla A (1985) Electromagentic modulation of biological processes. Chemical, physical and biological correlations in the Ca-uptake by embryonal chick tibia in vitro. Bioelectrochem Bioenerg 10:119–131

    Google Scholar 

  • Crabb DW, Bosron WF, Li TK (1987) Ethanol metabolism. Pharmacol Therapy 34:59–73

    Article  CAS  Google Scholar 

  • De Biase PM, Doctorovich F, Murgida DH, Estrin DA (2007) Electric field effects on the reactivity of heme model systems. Chem Phys Lett 434:121–126

    Article  Google Scholar 

  • Delport P, Cheng N, Multer J, Sansen W, De Loecker W (1985) The effect of pulsed electromagnetic fields on metabolism in rat skin. Bioelectrochem Bioenerg 14:93–98

    Article  CAS  Google Scholar 

  • Dutreux D, Notermans S, Wijtzes T, Gongora-Nieto HM, Barbosa-Canovas GV, Swanson BG (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 4:91–98

    Article  Google Scholar 

  • Fiedurek J (1999) Influence of pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production. Acta Biotechnol 19:179–186

    Article  CAS  Google Scholar 

  • Goodman R, Abott A, Krim A, Henderson A (1985) Nucleic acid and protein synthesis in cultured Chinese hamster ovary cells exposed to the avascular necrosis treatment system. J Bioelectr 4:565–575

    CAS  Google Scholar 

  • Grosse HH, Bauer E, Berg H (1988) Electrostimulation during fermentation. Bioelectrochem Bioenerg 20:279–285

    Article  CAS  Google Scholar 

  • Harada A, Kataoka K (2003) Switching by pulse electric field of the elevated enzymatic reaction in the core of polyion complex micelles. J Am Chem Soc 125:15306–15307

    Article  CAS  PubMed  Google Scholar 

  • Harrison SL, Barbosa-Canovas GV, Swanson BG (1997) Saccharomyces cerevisiae structural changes induced by pulsed electric field treatment. LWT-Food Sci Technol 30:236–240

    Article  CAS  Google Scholar 

  • Jones D (1984) The effect of pulsed magnetic fields on cyclic AMF metabolism in organ cultures of chick embryo tibiae. J Bioelectr 3:427–446

    CAS  Google Scholar 

  • Kaminsky J, Jensen F (2007) Force field modeling of amino acid conformational energies. J Chem Theory Comp 3:1774–1788

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle—biomolecule hybrid systems. Synthesis, properties and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  • Liboff A, Williams T, Strong D, Wister R (1984) Time-varying magnetic fields: effect on DNA synthesis. Science 223:818–820

    Article  CAS  PubMed  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York

    Book  Google Scholar 

  • Maziah M, Ooi BB, Tengku M, Sreeramanan S (2012) Effects of electromagnetic field of 33 and 275 kV influences on physiological, biochemical and antioxidant system changes of leaf mustard (Brassica chinensis). Afr J Biotechnol 11:13016–13029

    Article  CAS  Google Scholar 

  • Mazurkiewicz J, Tomasik P (2010) Contribution to understanding of weak electrical phenomena. Nat Sci 2:1195–1202

    Google Scholar 

  • Mazurkiewicz J, Tomasik P (2012a) Effect of external electric field upon charge distribution, energy and dipole moment of selected monosaccharide molecules. Nat Sci 4:278–285

    Google Scholar 

  • Mazurkiewicz J, Tomasik P (2012b) Effect of external electric field upon lower alkanols. Adv Nat Sci Can 5(4):28–35

    CAS  Google Scholar 

  • Mazurkiewicz J, Tomasik P (2013a) Effect of external electric field upon selected proteogenic amino acids. Adv Nat Sci Can 6(4):1–16

    Google Scholar 

  • Mazurkiewicz J, Tomasik P (2013b) Effect of external electric field to porphin and selected metalloporphyrin systems. Conv Altern Med Sci 1:13–21

    Google Scholar 

  • Mazurkiewicz J, Tomasik P (2014) Effect of external electric field upon selected dipeptides. Adv Nat Sci Canada 7(1):6–11

    CAS  Google Scholar 

  • Murgida DH, Hildebrandt P (2004) Electron transfer process of cytochrome c at interfaces. New insight by surface enhanced resonance Raman spectroscopy. Acc Chem Res 37:854–861

    Article  CAS  PubMed  Google Scholar 

  • Murgida DH, Hildebrandt P (2005) Redox and redox-coupled processes of heme proteins and enzymes at electrochemical interfaces. Phys Chem Chem Phys 7:3773–3784

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Tokuda H, Soga T, Yoshinaga T, Takeda M (1988) Effect of electric current on growth and alcohol production by yeast cells. J Ferment Bioeng 85:250–253

    Article  Google Scholar 

  • Nechitailo G, Gordeev A (2001) Effect of artificial electric fields on plants grown under microgravity conditions. Adv Space Res 8:629–631

    Article  Google Scholar 

  • Ponne CT, Bartels PV (1995) Interaction of electromagnetic energy with biological material. Relation to food processing. Radiat Phys Chem 45:591–607

    Article  CAS  Google Scholar 

  • Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta Gen Subjects 148:781–788

    Article  Google Scholar 

  • Sisken B, McLeod B, Pilla A (1984) Electrical effects on nerve ganglia in vitro. J Bioelectr 3:81–100

    Google Scholar 

  • Smith S (1986) Pulsed electric field increased the rate of growth of chicken ganglia. Stud Biophys 119:131–136

    Google Scholar 

  • Soriano-Correa C, Barrientos-Salcedo C, Raya A, Po’o CR, Esquivel RO (2010) The influence of electron donor and electron acceptor groups on the electronic structure of anti-inflammatory tripeptide Cys-Asn-Ser. Int J Quantum Chem 110:2398–2410

    CAS  Google Scholar 

  • Taft R (1953) The general nature of the proportionality of polar effects of the substituent groups in organic chemistry. J Am Chem Soc 75:4231–4238

    Article  CAS  Google Scholar 

  • Tenforde TS, Kaune WT (1987) Interaction of extremely low frequency electric and magnetic fields with humans. Health Phys 53:585–606

    Article  CAS  PubMed  Google Scholar 

  • Tiessie J, Knox BE, Tsong TY, Wehrle J (1981) Synthesis of adenosine triphosphate in respiration—inhibited submitochondrial particles induced by microsecond electric pulses. Proc Natl Acad Sci USA 78:7473–7477

    Article  Google Scholar 

  • Todorovic S, Pereira MM, Bandeiras TM, Teixeira M, Hildebrandt P, Murgida DH (2005) Midpoint potentials of hemes a and a3 in the quinol oxidase from Acidianus ambivalens are inverted. J Am Chem Soc 127:13561–13566

    Article  CAS  PubMed  Google Scholar 

  • Todorovic S, Jung C, Hildebrandt P, Murgida DH (2006) Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization. J Biol Inorg Chem 11:119–127

    Article  CAS  PubMed  Google Scholar 

  • Tsong TY, Astumray RD (1986) Absorption and conversion of electric field :energy by membrane bound aptases. Bioelectrochem Bioenerg 15:457–476

    Article  CAS  Google Scholar 

  • US Congress Office of Technology Assessment (1989) Biological effects of power frequency electric and magnetic fields Background Paper, OTA-BP-E-53. US Government Printing Office, Washington DC

    Google Scholar 

  • Wartenberg M, Wirtz N, Grob A, Niedermeier W, Hescheler J, Peters SC, Sauer H (2008) Direct current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH oxidase-derived reactive oxygen species. Bioelectromagn 29:47–54

    Article  CAS  Google Scholar 

  • WHO (2005) Electromagnetic fields and public health. Intermediate frequencies. Information sheet, February

  • Willner I, Katz E (2000) Integration of layered redox proteins and conductive support for bioelectronic applications. Angew Chem Int Ed 39:1180–1218

    Article  Google Scholar 

Download references

Conflict of interest

The authors of the submitted text (Effect of external electric field on selected tripeptides) know nothing about potential conflict of interest between us and known to us researchers involved in the peptide study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Tomasik.

Additional information

Handling Editor: M. S. Palma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurkiewicz, J., Kołoczek, H. & Tomasik, P. Effect of the external electric field on selected tripeptides. Amino Acids 47, 1399–1408 (2015). https://doi.org/10.1007/s00726-015-1971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1971-8

Keywords

Navigation