Skip to main content
Log in

PEGylated dendrimer polystyrene support: synthesis, characterisation and evaluation of biologically active peptides

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Poly(N,N-bisethylamine) dendrimers with high content of poly(ethylene glycol) were synthesized on 3-(Acryloyloxy)-2-hydroxypropylmethacrylate-crosslinked polystyrene (PS-AHMA) resin and tested in various conditions of solid phase peptide synthesis. The dendritic templates were generated to the second generation on cross-linker active site of 3-(Acryloyloxy)-2-hydroxypropylmethacrylate (AHMA). First generation dendrimer was designed by series of four-stage reactions, such as Schiff base incorporation, acidolytic cleavage, diazotization and thionyl chloride treatment and same synthetic routes were followed for second generation also. Poly(ethylene glycol) (PEG1000) has been grafted to second-generation dendrimer and used to check various physico-chemical parameters in Fmoc/Boc peptide synthetic conditions. The utility of PEGylated dendrimer support was demonstrated by synthesizing biologically potent linear as well as disulfide-bonded peptide by Fmoc method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auzanneau FI, Meldal M, Bock K (1995) Synthesis, characterization and biocompatibility of PEGA resins. J Pept Sci 1:31–44

    Article  PubMed  CAS  Google Scholar 

  • Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Prot 2:3247–3256

    Article  CAS  Google Scholar 

  • Dolle RE, Bourdonnec BL, Morales GA, Moriarty KJ, Salvino JM (2005) Comprehensive survey of combinatorial library synthesis. J Comb Chem 8:597–635

    Article  Google Scholar 

  • Galande AK, Weissleder R, Tung C (2005) An effective method of on-resin disulfide bond formation in peptides. J Comb Chem 7:174–177

    Article  PubMed  CAS  Google Scholar 

  • Geysen HM, Schoenen F (2003) Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat Rev Drug Discov 2:222–230

    Article  PubMed  Google Scholar 

  • Gooding OW, Baudart S, Deegen TL, Heisler K, Labadie JW, Newcomeb WS, Porco JA Jr, van Eikeren P (1999) On the development of new poly(styrene-oxyethylene) graft copolymer resin supports for solid-phase organic synthesis. J Comb Chem 1:113–122

    Article  CAS  Google Scholar 

  • Groth T, Grotli M, Meldal M (2001) Diffusion of reagents in macrobeads. J Comb Chem 3:461–468

    Article  PubMed  CAS  Google Scholar 

  • Guyot A, Bartholin M (1982) Design and properties of polymers as materials for fine chemistry. Prog in Polym Sci 8:277–331

    Article  CAS  Google Scholar 

  • Jacob MK, Leena S, Kumar KS (2008) Peptide-polymer biotherapeutic synthesis on novel cross-linked beads with ‘‘spatially tunable’’ and ‘‘isolated’’ functional sites. Biopolymers 90:512–525

    Article  PubMed  CAS  Google Scholar 

  • Krishnakumar IM, Mathew B (2002) A comparison of rigid and flexible cross-linked polymer-supported peptide synthesis. Eur Poly J 38:1745–1752

    Article  CAS  Google Scholar 

  • Kumar GSV, Leena S, Kumar KS (2004) Synthesis of a shark repellent peptide toxin, pardaxin (16–33) on a highly flexible polymer support: Clpser. Prot Pep Lett 11:547–554

    Article  CAS  Google Scholar 

  • Labadie JW (1998) Polymeric supports for solid phase synthesis. Curr Opin Chem Biol 2:346–352

    Article  PubMed  CAS  Google Scholar 

  • Lu YA, Felix AM (1994) Pegylated peptides III. Solid-phase synthesis with pegylating reagents of varying molecular weight: synthesis of multiply pegylated peptides. React Polym 22:221–229

    Article  CAS  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2153

    Article  CAS  Google Scholar 

  • Pierre TN, Seon AA, Amiche M, Nicolas P (2003) Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem 267:370–378

    Article  Google Scholar 

  • Rademann J, Grotli M, Meldal M, Bock K (1999) SPOCC: a resin for solid-phase organic chemistry and enzymatic reactions on solid phase. J Am Chem Soc 121:5459–5466

    Article  CAS  Google Scholar 

  • Rapp w, Zhang L, Bayer E, In: Epton R (ed) (2002) Innovations and perspectives in solid phase synthesis. SPCC, Birmingham, pp 205–210

  • Roberts M, Bentley M, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Del Rev 54:459–476

    Article  CAS  Google Scholar 

  • Roice M, Pillai VNR (2005) Poly(styrene-co-glycerol dimethacrylate): synthesis, characterization, and application as a resin for gel-phase peptide synthesis. J Polym Sci, Part A: Polym Chem 43:4382–4392

    Article  CAS  Google Scholar 

  • Schleyer A, Meldal M, Renil M, Paulsen H, Bock K (1997) Direct solid-phase glycosylations of peptide templates on a novel PEGbased resin. Angew Chem Int Ed Engl 36:1976–1978

    Article  CAS  Google Scholar 

  • Siyad MA, Kumar GSV (2012a) SPED-(styrene-polyethyleneglycol diacrylate-9-decen-1-ol): a novel resin for solid phase peptide synthesis; synthesis and characterization of biologically potent endothelin classes of peptides. Comb Chem High Throughput Screen 15:386–394

    Article  PubMed  CAS  Google Scholar 

  • Siyad MA, Kumar GSV (2012b) Synthesis, characterization, and evaluation of PS-PPDC resin: a novel flexible cross-linked polymeric support for solid-phase organic synthesis. Biopolymers 98:239–248

    Article  PubMed  CAS  Google Scholar 

  • Siyad MA, Nair ASV, Kumar GSV (2010) Solid-phase peptide synthesis of endothelin receptor antagonists on novel flexible, styrene-acryloyloxyhydroxypropyl methacrylate tripropyleneglycoldiacrylate [SAT] resin. J Comb Chem 12:298–305

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Yang RL (2010) PEG-related polymer resins as synthetic supports. Sci China Chem 53:1844–1852

    Article  CAS  Google Scholar 

  • Wang YA, Zhang G, Yan H, Fan Y, Shi Z, Lu Y, Sun Q, Jiang W, Zheng Y, Li S, Liu Z (2006) Polystyrene resins cross-linked with di- or tri(ethylene glycol) dimethacrylates as supports for solid-phase peptide synthesis. Tetrahedron 62:4948–4953

    Article  CAS  Google Scholar 

  • Zalipsky S, Chang JL, Albericio F, Barany G (1994) Preparation and applications of polyethylene glycol-polystyrene graft resin supports for solid-phase peptide synthesis. React Polym 22:243–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CSIR, New Delhi, for providing funding and RGCB for research facilities. The help rendered by IISc, Bangalore, for NMR and MALDI facilities is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vinod Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siyad, M.A., Vinod Kumar, G.S. PEGylated dendrimer polystyrene support: synthesis, characterisation and evaluation of biologically active peptides. Amino Acids 44, 947–959 (2013). https://doi.org/10.1007/s00726-012-1424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1424-6

Keywords

Navigation