Skip to main content

Advertisement

Log in

Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Activity of carnosinase (CN1), the only dipeptidase with substrate specificity for carnosine or homocarnosine, varies greatly between individuals but increases clearly and significantly with age. Surprisingly, the lower CN1 activity in children is not reflected by differences in CN1 protein concentrations. CN1 is present in different allosteric conformations in children and adults since all sera obtained from children but not from adults were positive in ELISA and addition of DTT to the latter sera increased OD450 values. There was no quantitative difference in the amount of monomeric CN1 between children and adults. Further, CN1 activity was dose dependently inhibited by homocarnosine. Addition of 80 μM homocarnosine lowered V max for carnosine from 440 to 356 pmol/min/μg and increased K m from 175 to 210 μM. The estimated K i for homocarnosine was higher (240 μM). Homocarnosine inhibits carnosine degradation and high homocarnosine concentrations in cerebrospinal fluid (CSF) may explain the lower carnosine degradation in CSF compared to serum. Because CN1 is implicated in the susceptibility for diabetic nephropathy (DN), our findings may have clinical implications for the treatment of diabetic patients with a high risk to develop DN. Homocarnosine treatment can be expected to reduce CN1 activity toward carnosine, resulting in higher carnosine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aydogan S, Yapislar H, Artis S et al (2008) Impaired erythrocytes deformability in H82)O(2)-induced oxidative stress: protective effect of l-carnosine. Clin Hemorheaol Microcirc 39:93–98

    CAS  Google Scholar 

  • Baguet A, Reyngoudt H, Pottier A et al (2009) Carnosine loading and washout in human skeletal muscles. J Appl Physiol 106:837–842

    Article  PubMed  CAS  Google Scholar 

  • Balion CM, Benson C, Raina PS et al (2007) Brain type carnosinase in dementia: a pilot study. BMC Neurol 7:38

    Article  PubMed  CAS  Google Scholar 

  • Bando K, Shimotsuji T, Toyoshima H (1984) Fluorometric assay of human serum carnosinase activity in normal children, adults and patients with myopathy. Ann Clin Biochem 21:510–514

    PubMed  CAS  Google Scholar 

  • Baran EJ (2000) Metal complexes of carnosine. Biochemistry (Mosc) 65:757–765

    Google Scholar 

  • Baslow MH (2009) A novel key-lock mechanism for inactivating amino acid neurotransmitters during transit across extracellular space. Amino Acids (epub ahead of print)

  • Bauer K (2005) Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Neurochem Res 30:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA (1993) Does carnosine possess direct antioxidant activity? Int J Biochem 25:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Regul 30:175–194

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA, Koldobski A, Kurella E et al (1993) Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. A biomedical aspect. Mol Chem Neuropathol 19:185–192

    Article  PubMed  CAS  Google Scholar 

  • Crush KG (1970) Carnosine and related substances in animal tissues. Comp Biochem Physiol 34:3–30

    Article  PubMed  CAS  Google Scholar 

  • Duane P, Peters TJ (1988) Serum carnosinase activities in patients with alcoholic chronic skeletal muscle myopathy. Clin Sci (Lond) 75:185–190

    CAS  Google Scholar 

  • Dunnett M, Harris RC, Dunnett CE et al (2002) Plasma carnosine concentration: diurnal variation and effects of age, exercise and muscle damage. Equine Vet J Suppl 34:283–287

    Article  PubMed  Google Scholar 

  • Gjessing LR, Lunde HA, Morkid L et al (1990) Inborn errors of carnosine and homocarnosine metabolism. J Neural Transm Suppl 29:91–106

    PubMed  CAS  Google Scholar 

  • Hipkiss AR (1998) Carnosine, a protective, anti-ageing peptide? Int J Biochem Cell Biol 30:863–868

    Article  PubMed  CAS  Google Scholar 

  • Jansen EW, Gibson KM, Shigematsu Y et al (2006) A novel, quantitative assay for homocarnosine in cerebrospinal fluid using stable-isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 830:196–200

    Article  PubMed  CAS  Google Scholar 

  • Janssen B, Hohenadel D, Brinkkoetter P et al (2005) Carnosine as a protective factor in diabetic nephropathy. Association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327

    Article  PubMed  CAS  Google Scholar 

  • Kendrick IP, Harris RC, Kim HJ et al (2008) The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 34:547–554

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ (2009) Comparison of the carnosine and taurine contents of vastus lateralis of elderly Korean males, with impaired glucose tolerance, and young elite Korean swimmers. Amino Acids 36:359–363

    Article  PubMed  CAS  Google Scholar 

  • Lenney JF, Georg RP, Weiss AM et al (1982) Human serum carnosinase: characterization, distinction from cellular carnosinase, and actvitation by cadmium. Clin Chim Acta 123:221–231

    Article  PubMed  CAS  Google Scholar 

  • Lenney JF, Peppers SC, Kucera-Orallo CM et al (1985) Characterization of human tissue carnosinsase. Biochem J 228:653–660

    PubMed  CAS  Google Scholar 

  • Margolis FL, Grillo M, Brown CE et al (1979) Enzymatic and immunological evidence for two forms of carnosinase in the mouse. Biochim Biophys Acta 570:311–323

    PubMed  CAS  Google Scholar 

  • McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212:167–175

    Article  PubMed  CAS  Google Scholar 

  • Min J, Senut MC, Rajanikant K (2008) Differential neuroprotective effects of carnosine, anserine and N-acetyl carnosine against permanent focal ischemia. J Neurosci Res 86:2984–2991

    Article  PubMed  CAS  Google Scholar 

  • Pegova A, Abe H, Boldyrev A (2000) Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comp Biochem Physiol B Biochem Mol Biol 127:443–446

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Hansen S, Stedman D et al (1968) Homocarnosine in human cerebrospinal fluid: an age-dependent phenomenon. J Neurochem 15:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Hansen S, Kennedy J (1974) CSF amino acids and plasma–CSF amino acid ratios in adults. J Neurochem 24:587–589

    Article  Google Scholar 

  • Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13:379–444

    Article  PubMed  CAS  Google Scholar 

  • Schönherr J (2002) Analysis of products of animal origin in feeds by determination of carnosine and related dipeptides by high-performance liquid chromatography. J Agric Food Chem 27:1945–1950

    Article  CAS  Google Scholar 

  • Tabakman R, Lazarovici P, Kohen R (2002) Neuroprotective effects of carnosine and homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J Neurosci Res 68:463–469

    Article  PubMed  CAS  Google Scholar 

  • Teufel M, Saudek V, Ledig J-P et al (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. JBC 278:6521–6531

    Article  CAS  Google Scholar 

  • Trombley PQ, Horning MS, Blakemore LJ (2000) Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection. Biochemistry (Mosc) 65:807–816

    CAS  Google Scholar 

  • Vistoli G, Pedretti A, Cattaneo M et al (2006) Homology modelling of human serum carnosinase, a potential medicinal target, and MD simulation of its allosteric activation by citrate. J Med Chem 49(11):3269–3277

    Article  PubMed  CAS  Google Scholar 

  • Wassif WS, Sherwood RA, Amir A (1994) Serum carnosinase activities in central nervous system disorders. Clin Chim Acta 225:57–64

    Article  PubMed  CAS  Google Scholar 

  • Willi SM, Zhang Y, Hill JB et al (1997) A deletion in the long arm of chromosome 18 in a child with serum carnosinase deficiency. Pediatr Res 41:210–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. K. Michael Gibson for comments and critical reading of the manuscript. Part of this study was supported by the EU-funded specific-target project PREDICTIONS on the identification of risk factors for the development of diabetic nephropathy as well as grants by the Deutsche Forschungsgemeinschaft to M. Mack and J Zschocke (Ma2510/3-1 and Zs17/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, V., Kebbewar, M., Jansen, E.W. et al. Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity. Amino Acids 38, 1607–1615 (2010). https://doi.org/10.1007/s00726-009-0367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0367-z

Keywords

Navigation