Skip to main content

Advertisement

Log in

Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. As a result of genome and other sequencing projects, the gap between the number of known apoptosis protein sequences and the number of known apoptosis protein structures is widening rapidly. Because of this extremely unbalanced state, it would be worthwhile to develop a fast and reliable method to identify their subcellular locations so as to gain better insight into their biological functions. In view of this, a new method, in which the support vector machine combines with discrete wavelet transform, has been developed to predict the subcellular location of apoptosis proteins. The results obtained by the jackknife test were quite promising, and indicated that the proposed method can remarkably improve the prediction accuracy of subcellular locations, and might also become a useful high-throughput tool in characterizing other attributes of proteins, such as enzyme class, membrane protein type, and nuclear receptor subfamily according to their sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Barinaga M (1998) Stroke-damaged neurons may commit cellular suicide. Science 281:1302–1303

    Article  CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava GPS (2004a) Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem 279:23262–23266

    Article  CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava GPS (2004b) ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acids Res 32:W414–W419

    Article  CAS  PubMed  Google Scholar 

  • Bulashevska A, Eils R (2006) Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC Bioinf 7:298

    Article  Google Scholar 

  • Cedano J, Aloy P, Pérez-Pons JA, Querol E (1997) Relation between amino acid composition and cellular location of proteins. J Mol Biol 266:594–600

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Lin CJ (2002) Training nu-support vector regression: theory and algorithms. Neural Comput 14:1959–1977

    Article  PubMed  Google Scholar 

  • Chen YL, Li QZ (2004) Prediction of the subcellular location apoptosis proteins using the algorithm of measure of diversity. Acta Sci Nat Univ NeiMongol 25:413–417

    CAS  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. J Theor Biol 248:377–381

    Article  CAS  PubMed  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct Funct Genet 43:246–255

    Article  CAS  PubMed  Google Scholar 

  • Chou KC (2004) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    CAS  PubMed  Google Scholar 

  • Chou KC, Cai YD (2003) A new hybrid approach to predict subcellular localization of proteins by incorporating gene oncology composition. Biochem Biophys Res Commun 311:743–747

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Cai YD (2004) Predicting protein structural class by functional domain composition. Biochem Biophys Res Commun 321:1007–1009

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2006) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic k-nearest neighbor classifiers. J Proteome Res 5:1888–1897

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2007) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Zhang CT (1995) Prediction of proteins structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  CAS  PubMed  Google Scholar 

  • Chou JJ, Matsuo H, Duan H, Wagner G (1998) Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94:171–180

    Article  CAS  PubMed  Google Scholar 

  • Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624

    Article  CAS  PubMed  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. In: CBMS-NSF regional conference series in applied mathematics. SIAM

  • Ding YS, Zhang TL (2008) Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recogn Lett 29:1887–1892

    Article  CAS  Google Scholar 

  • Eisenberg D, McLachlan AD (1986) Solvation energy in protein folding and binding. Nature 319:199–203

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144

    Article  CAS  PubMed  Google Scholar 

  • Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Fauchere JL, Pliska V (1983) Transformational homologies in amino acid sequence. Eur J Med Chem 18:369–375

    CAS  Google Scholar 

  • Feng ZP (2001) Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition. Biopolymers 58:491–499

    Article  CAS  PubMed  Google Scholar 

  • Grunbaum FA (1992) An introduction to wavelets. Science 257:821–822

    Article  PubMed  Google Scholar 

  • Hirakawa H, Muta S, Kuhara S (1999) The hydrophobic cores of proteins predicted by wavelet analysis. Bioinformatics 15:141–148

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li Y (2004) Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics 20:21–28

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Shi F, Zhou HB (2005) Support vector machine for predicting apoptosis proteins types by incorporating protein instability index. China J Bioinf 3:121–123

    Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  • Joachims T (1999) Making large-scale SVM learning practical. In: Scholkopf B, Burges C, Smola A (eds) Advances in kernel methods—support vector learning. MIT Press, Cambridge

    Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  • Kreßel UH (1999) Pairwise classification and support vector machines. In: Schölkopf B, Burges CJ, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  • Mallat SG (1999) A wavelet tour of signal processing. Academic Press, San Diego

    Google Scholar 

  • Nakashima H, Nishikawa K (1994) Discrimination of intracellular and extracellular proteins using amino acid composition and residue pair frequencies. J Mol Biol 238:54–61

    Article  CAS  PubMed  Google Scholar 

  • Park KJ, Kanehisa M (2003) Prediction of protein subcellular locations by support vector machines using compositions of amino acid and amino acid pairs. Bioinformatics 19:1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Platt J, Cristianini N, Shawe-Taylor J (2000) Large margin DAGs for multiclass classification. Adv Neural Inf Proc Syst 12:547–553

    Google Scholar 

  • Qiu JD, Liang RP, Zou XY, Mo JY (2003) Prediction of protein secondary structure based on continuous wavelet transform. Talanta 61:285–293

    Article  CAS  PubMed  Google Scholar 

  • Qiu JD, Liang RP, Zou XY, Mo JY (2004) Prediction of transmembrane proteins based on the continuous wavelet transform. J Chem Inf Comput Sci 44:741–747

    CAS  PubMed  Google Scholar 

  • Qiu JD, Huang JH, Liang RP, Luo SH (2009a) Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform. Anal Biochem 390:68–73

    Article  CAS  PubMed  Google Scholar 

  • Qiu JD, Luo SH, Huang JH, Liang RP (2009b) Using support vector machines for prediction of protein structural classes based on discrete wavelet transform. J Comput Chem 30:1344–1350

    Article  CAS  PubMed  Google Scholar 

  • Qiu JD, Luo SH, Huang JH, Liang RP (2009c) Using support vector machines to distinguish enzymes: approached by incorporating wavelet transform. J Theor Biol 256:625–631

    Article  CAS  PubMed  Google Scholar 

  • Reed JC, Paternostro G (1999) Postmitochondrial regulation of apoptosis during heart failure. Proc Natl Acad Sci USA 96:7614–7616

    Article  CAS  PubMed  Google Scholar 

  • Schulz JB, Weller M, Moskowitz MA (1999) Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45:421–429

    Article  CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2007) Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Cheng YM, Xie J (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  CAS  PubMed  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Vaux DL, Heacker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76:77–779

    Article  Google Scholar 

  • Walczak B (2000) Wavelets in chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Zhang ZH, Wang ZH, Zhang ZR, Wang YX (2006) A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett 580:6169–6174

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Zhang YL, Yang YF, Zhao CH, Pan Q (2008) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids 34:565–572

    Article  CAS  PubMed  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins Struct Funct Genet 50:44–48

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Chou JJ, Olea RS, Yuan J, Wagner G (1999) Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction. Proc Natl Acad Sci USA 96:11265–11270

    Article  CAS  PubMed  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2008) Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids 35:383–388

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (20605010, 20865003, 20805023), the Jiangxi Province Natural Science Foundation (2007JZH2644), the Opening Foundation of State Key Laboratory of Chem/Biosensing and Chemometrics of Hunan University (2006022, 2007012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ding Qiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, JD., Luo, SH., Huang, JH. et al. Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine. Amino Acids 38, 1201–1208 (2010). https://doi.org/10.1007/s00726-009-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0331-y

Keywords

Navigation