Skip to main content
Log in

Changes in plasma amino acid levels in a euryhaline fish exposed to different environmental salinities

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Previous studies have shown that Senegalese sole is partially euryhaline in the juvenile phase, being able to adapt to a wide range of salinities in a short-time period, due to changes at the osmoregulatory and metabolic level. This study aimed to assess the effects of acclimation of sole to a wide range of salinities, with a special emphasis on the role of plasma amino acids during this process. Sole juveniles were acclimated for 2 weeks to different salinities: 5, 15, 25, 38, and 55 g L−1. Plasma levels of cortisol, glucose, osmolality, and free amino acids were assessed at the end. Changes in plasma levels of cortisol, glucose, and amino acids indicate that fish reared at 5 and 55 g L−1 were facing extra energy costs. Amino acids seem to play an important role during salinity acclimation, either as energy sources or as important osmolytes for cell volume regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aragão C, Corte-Real J, Costas B, Dinis MT, Conceição LEC (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids 34:143–148

    Article  PubMed  Google Scholar 

  • Arends RJ, Mancera JM, Muñoz JL, Wendelaar Bonga SE, Flik G (1999) The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement. J Endocrinol 163:149–157

    Article  CAS  PubMed  Google Scholar 

  • Arjona FJ, Vargas-Chacoff L, Ruiz-Jarabo I, Martín del Río MP, Mancera JM (2007) Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity. Comp Biochem Physiol A 148:413–421

    Article  Google Scholar 

  • Arjona FJ, Vargas-Chacoff L, Martín del Río MP, Flik G, Mancera JM, Klaren PHM (2008) The involvement of thyroid hormones and cortisol in the osmotic acclimation of Solea senegalensis. Gen Comp Endocrinol 155:796–803

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne JS (2001) Amino acid metabolism. In: Wright PA, Anderson AJ (eds) Nitrogen excretion. Fish physiology, vol 20. Academic Press, San Diego, pp 77–107

    Chapter  Google Scholar 

  • Bauchot M-L (1987) Soleidae. In: Fisher W, Schneider M, Bauchot M-L (eds) Fiches FAO d’Identification des Espèces pour les Bessoins de la Pêche. Méditerranée et Mer Noire. Zone de pêche 37. Révision 1, vol II. Vertébrés. FAO, Rome. pp 1325–1342

  • Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130:988S–990S

    CAS  PubMed  Google Scholar 

  • Bystriansky JS, Frick NT, Ballantyne JS (2007) Intermediary metabolism of Arctic char Salvelinus alpinus during short-term salinity exposure. J Exp Biol 210:1971–1985

    Article  CAS  PubMed  Google Scholar 

  • Cohen SA, Meys M, Tarvin TL (1989) The Pico-Tag method—a manual of advanced techniques for amino acid analysis. Waters, Bedford

    Google Scholar 

  • Costas B, Aragão C, Mancera JM, Dinis MT, Conceição LEC (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquac Res 39:1–9

    CAS  Google Scholar 

  • Deaton LE (2001) Hyperosmotic volume regulation in the gills of the ribbed mussel, Geukensia demissa: rapid accumulation of betaine and alanine. J Exp Mar Biol Ecol 260:185–197

    Article  CAS  PubMed  Google Scholar 

  • Edwards HA (1982) Free amino acids as regulators of osmotic pressure in aquatic insect larvae. J Exp Biol 101:153–160

    CAS  Google Scholar 

  • Fujimori T, Abe H (2002) Physiological roles of free d- and l-alanine in the crayfish Procambarus clarkii with special reference to osmotic and anoxic stress responses. Comp Biochem Physiol A 131:893–900

    Article  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–144

    CAS  PubMed  Google Scholar 

  • Ip YK, Chew SF, Randall DJ (2001) Ammonia toxicity, tolerance, and excretion. In: Wright PA, Anderson AJ (eds) Nitrogen excretion. Fish physiology, vol 20. Academic Press, San Diego, pp 109–148

    Chapter  Google Scholar 

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín del Río MP, Míguez JM, Soengas SL, Mancera JM (2002) Energy metabolism in fish tissues related to osmoregulation and cortisol action. Fish Physiol Biochem 27:179–188

    Article  Google Scholar 

  • Laiz-Carrión R, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL (2003) Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata. J Exp Zool 298A:105–118

    Article  Google Scholar 

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín del Río MP, Soengas JL, Mancera JM (2005) Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture 250:849–861

    Article  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  • Milligan CL (1997) The role of cortisol in amino acid mobilization and metabolism following exhaustive exercise in rainbow trout (Oncorhynchus mykiss Walbaum). Fish Physiol Biochem 16:1119–1128

    Article  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Pinto W, Aragão C, Soares F, Dinis MT, Conceição LEC (2007) Growth, stress response and free amino acid levels in Senegalese sole (Solea senegalensis Kaup 1858) chronically exposed to exogenous ammonia. Aquac Res 38:1198–1204

    Article  CAS  Google Scholar 

  • Quéro JC, Desoutter M, Lagardére F (1986) Soleidae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris, pp 1308–1324

    Google Scholar 

  • Rotllant J, Ruane NM, Dinis MT, Canário AVM, Power DM (2006) Intra-adrenal interactions in fish: catecholamine stimulated cortisol release in sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol A 143:375–381

    Article  Google Scholar 

  • Sangiao-Alvarellos S, Laiz-Carrión R, Guzmán JM, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL (2003) Acclimation of S. aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. Am J Physiol Regul Integr Comp Physiol 285:R897–R907

    CAS  PubMed  Google Scholar 

  • Sangiao-Alvarellos S, Arjona FJ, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304

    Article  PubMed  Google Scholar 

  • Schaarschmidt T, Meyer E, Jürss K (1999) A comparison of transport-related gill enzyme activities and tissue-specific free amino acid concentrations of Baltic Sea (brackish water) and freshwater threespine sticklebacks, Gasterosteus aculeatus, after salinity and temperature acclimation. Mar Biol 135:689–697

    Article  CAS  Google Scholar 

  • Soengas JL, Sangiao-Alvarellos S, Laiz-Carrión R, Mancera JM (2008) Energy metabolism and osmotic acclimation in teleost fish. In: Baldisserotto B, Mancera JM, Kapoor BG (eds) Fish osmoregulation. Science Publishers, Inc., Enfield, IBH Publishing Co. Pvt. Ltd, New Delhi, pp 278–307

  • Van den Thillart G (1986) Energy metabolism of swimming trout (Salmo gairdneri). Oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate. J Comp Physiol B 156:511–520

    Article  Google Scholar 

  • Van Waarde A (1988) Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp Biochem Physiol B 91:207–228

    Article  Google Scholar 

  • Vijayan MM, Pereira C, Gordon Grau E, Iwama GK (1997) Metabolic response associated with confinement stress in tilapia: the role of cortisol. Comp Biochem Physiol C 116:89–95

    Article  Google Scholar 

  • Wilson RP (2002) Amino acids and proteins. In: Halver JE, Hardy RW (eds) Fish nutrition. Elsevier Science, San Diego, pp 144–179

    Google Scholar 

  • Yancey PH (2001a) Nitrogen compounds as osmolytes. In: Wright PA, Anderson AJ (eds) Nitrogen excretion. Fish physiology, vol 20. Academic Press, San Diego, pp 309–341

    Chapter  Google Scholar 

  • Yancey PH (2001b) Water stress, osmolytes and proteins. Am Zool 41:699–709

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by projects STRESSAA—POCTI/CVT/49324/2002 (FCT, Portugal and FEDER), AGL2007-61211/ACU (Ministerio de Educación y Ciencia, Spain), and Proyecto de Excelencia PO7-RNM-02843 (Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain). Cláudia Aragão and Benjamín Costas benefited from grants by Fundação para a Ciência e Tecnologia, Portugal (SFRH/BPD/37197/2007 and SFRH/BD/38697/2007, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Aragão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragão, C., Costas, B., Vargas-Chacoff, L. et al. Changes in plasma amino acid levels in a euryhaline fish exposed to different environmental salinities. Amino Acids 38, 311–317 (2010). https://doi.org/10.1007/s00726-009-0252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0252-9

Keywords

Navigation