Skip to main content
Log in

γ-L-glutamyltaurine

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary.

The discovery of the dipeptide γ-glutamyltaurine (γ-GT; glutaurine, Litoralon) in the parathyroid in 1980 and later in the brain of mammals gave rise to studies on intrinsic and synthetic taurine peptides of this type. It was suggested that γ-glutamyltransferase (GGT; γ-glutamyltranspeptidase) in the brain is responsible for the in vivo formation of this unusual dipeptide. γ-GT has been prepared by both synthetic and enzymatic methods. The chemical syntheses included the use of protecting groups and coupling methods. A wide spectrum of analytical and spectroscopic methods was used to confirm the structure of the synthetic compounds and to elucidate the position of the peptide bond. Enzymatic preparation of γ-GT from taurine takes advantage of the selective transpeptidation action of GGT on L-glutamine, glutathione, γ-glutamyl-p-nitroanilide or other glutamine donors. Although the functional roles of γ-GT in the brain are only poorly understood, many of its established CNS effects have been reported in the last 25 years. Its effect on emotional arousal and its anti-conflict potencies are synergistic with the anxiolytic drug diazepam. γ-GT exhibits anti-conflict potency, which is exerted by reducing aversion or phobia and/or the anxiety levels. γ-GT also acts as endogenous modulator in excitatory aminoacidergic neurotransmission. It is suggested that such acidic peptides through N-methyl-D-aspartic acid receptors could be part of the neurochemical substrate underlying self-stimulation of the medial prefrontal cortex. Other γ-GT effects in neural systems include: effects on the monoamine concentration in the brain; effects on aggressive behavior in the cat; effects on thyroid hormones in the rat; amelioration of electroshock-induced amnesia; potent and long-lasting antiepileptic action (on intra-amygdaloid injection); affect the glutamatergic system in schizophrenic disorders. Roles for γ-GT in non-neural systems have also been reported, e.g., effects on the metamorphosis of amphibians; on plasma rennin regulation; on radiation protection; on uric acid levels; on human antibody-dependent cell-mediated cytotoxicity (ADCC) and many more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittner, S., Win, T. & Gupta, R. γ-L-glutamyltaurine. Amino Acids 28, 343–356 (2005). https://doi.org/10.1007/s00726-005-0196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-005-0196-7

Navigation