Skip to main content
Log in

NMR Spectroscopic Imaging Method for Static Magnetic Field Mapping

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A previously published nuclear magnetic resonance (NMR) spectroscopic imaging method for mapping static magnetic fields has been modified, replacing the gradient echo sequence with an asymmetric spin echo sequence. The purpose of the modification is to reinforce the technique and make it useable even in conditions in which the gradient echo sequence cannot be operated. The modification performed was verified by an experiment performed on a low-field NMR scanner. The rough and fine errors due to the long time of measurement were corrected during the processing of the measured images. An optimization procedure was used to correct the fine errors. The map of the static magnetic field acquired using the new technique was compared to the map calculated from the phase images and both were compared to the result measured using a magnetometer. The verification confirmed the legitimacy of the modification and suitability of the novel technique. Some alternatives to the measured data processing have been suggested, shortening the global time of the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Weis, I. Frollo, L. Budinsky, Zeitschrift für Naturforschung A 44(12), 1151–1154 (1989)

    Google Scholar 

  2. J. Weis, A. Ericsson, A. Hemmingsson, Magn. Reson. Med. 41(5), 904–908 (1999)

    Article  Google Scholar 

  3. P. Andris, I. Frollo, Meas. Sci. Technol. 22, 045501 (2011). doi:10.1088/0957-0233/22/4/045501

    Article  ADS  Google Scholar 

  4. K. Sekihara, S. Matsui, H. Kohno, J. Phys. E 18(3), 224–227 (1985)

    Article  ADS  Google Scholar 

  5. K. Sekihara, S. Matsui, H. Kohno, IEEE Trans. Med. Imaging M1–4(4), 193–199 (1985)

    Article  Google Scholar 

  6. P. Andris, I. Frollo, Meas. Sci. Technol. 23, 065006 (2012). doi:10.1088/0957-0233/23/6/065006

    Article  ADS  Google Scholar 

  7. K. Bartusek, Z. Dokoupil, E. Gescheidtova, Meas. Sci. Technol. 17(12), 3293–3300 (2006)

    Article  ADS  Google Scholar 

  8. P. Andris, I. Frollo, Measurement 42(5), 737–741 (2009)

    Article  Google Scholar 

  9. K. Bartusek, Z. Dokoupil, E. Gescheidtova, Meas. Sci. Technol. 18(7), 2223–2230 (2007)

    Article  ADS  Google Scholar 

  10. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998)

  11. M. Jenkinson, Magn. Reson. Med. 49(1), 193–197 (2003)

    Article  Google Scholar 

  12. G.H. Glover, E. Schneider, Magn. Reson. Med. 18(2), 371–383 (1991)

    Article  Google Scholar 

  13. G.H. Glover, J. Magn. Reson. Imaging 1(1), 521–530 (1991)

    Article  Google Scholar 

  14. D. Tomasi, H. Panepucci, Magn. Reson. Imaging 17(1), 157–160 (1999)

    Article  Google Scholar 

  15. J. Weis, P. Andris, I. Frollo, H. Ahlström, MAGMA 18(6), 283–287 (2005)

    Article  Google Scholar 

  16. H. Wen, F.A. Jaffer, Magn. Reson. Med. 34(6), 898–904 (1995)

    Article  Google Scholar 

  17. E. Schneider, G. Glover, Magn. Reson. Med. 18(2), 335–347 (1991)

    Article  Google Scholar 

  18. L. Li, J.S. Leigh, Magn. Reson. Med. 51(5), 1077–1082 (2004)

    Article  Google Scholar 

  19. A.A. Maudsley, H.E. Simon, S.K. Hilal, J. Phys. E 17(013), 216–230 (1984)

    Article  ADS  Google Scholar 

  20. A. Kawanaka, M. Takagi, J. Phys. E 19(10), 871–875 (1986)

    Article  ADS  Google Scholar 

  21. H. Rabbani, Measur. Sci. Rev. 11(3), 125–130 (2011)

    Google Scholar 

  22. L. Valkovic, C. Windischberger, Meas. Sci. Rev. 10(4), 116–119 (2010)

    Article  Google Scholar 

  23. W. Dominguez-Viqueira, W. Berger, J. Parra-Robles, G.E. Santyr, Concepts Magn. Reson. Part B: Magn. Reson. Eng. 37B(2), 75–85 (2010)

    Article  Google Scholar 

  24. P. Latta, M.L.H. Gruwel, V. Volotovskyy, M.H. Weber, B. Tomanek, Magn. Reson. Imaging 25(9), 1272–1276 (2007)

    Article  Google Scholar 

  25. M.F. Carias, W. Dominguez-Viqueira, G.E. Santyr, Concepts Magn. Reson. Part B: Magn. Reson. Eng. 39B(1), 37–42 (2011)

    Article  Google Scholar 

  26. H. Yuan, X. Lv, X. Ma, R. Zhang, Y. Fu, X. Yang, X. Wang, Z. Zhang, J. Fang, J. Zhang, Magn. Reson. Imaging 31(1), 150–155 (2013). doi:10.1016/j.mri.2012.06.032

    Google Scholar 

  27. P. Latta, M.L. Gruwel, V. Volotovskyy, M.H. Weber, B. Tomanek, Magn. Reson. Imaging 26(1), 109–116 (2008)

    Article  Google Scholar 

  28. W. Dominguez-Viqueira, J. Parra-Robles, M. Fox, W.B. Handler, B.A. Chronik, G.E. Santyr, Concepts Magn. Reson. Part B: Magn. Reson. Eng. 33B(2), 123–137 (2008)

    Article  Google Scholar 

  29. J. Mikulka, E. Gescheidtova, K. Bartusek, Meas. Sci. Rev. 12(4), 153–161 (2012)

    Article  Google Scholar 

  30. L. Valkovic, V. Juráš, D. Gogola, I. Frollo, Appl. Magn. Reson. 42(4), 463–471 (2012)

    Article  Google Scholar 

  31. V. Juras, Š. Zbýň, P. Szomolanyi, S. Trattnig, Med. Phys. 37(6), 2813–2821 (2010)

    Article  Google Scholar 

  32. G. Wimmer, V. Witkovský, T. Duby, Meas. Sci. Technol. 11(12), 1659–1665 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the Grant Agency of the Slovak Academy of Sciences (grant nos. 2/0090/11 and 2/0160/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Andris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andris, P., Frollo, I. NMR Spectroscopic Imaging Method for Static Magnetic Field Mapping. Appl Magn Reson 44, 637–647 (2013). https://doi.org/10.1007/s00723-012-0430-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0430-x

Keywords

Navigation