, Volume 107, Issue 2, pp 341-348

Impact of amide–amide hydrogen bonding on the stability of two nicotinamide complexes of silver(I)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The nicotinamide (pyridine-3-carboxamide, nia) complexes of silver(I), [Ag(nia)2(NO3)]·H2O (1), [Ag(nia)2(NO3)] (2), and {K[Ag(nia)2](NO3)2} n (3), were prepared and characterised by IR spectroscopy and TG/DTA thermal methods. The solid state structures of 2 and 3 were determined by single-crystal X-ray diffraction analysis. In both complexes two nicotinamide ligands are coordinated to silver(I) through the nitrogen atom of the pyridine ring in a near-linear fashion. In 2, additional coordination by two oxygen atoms of one nitrate group leads to the distorted tetrahedral coordination environment of silver(I). In 3, nitrate ions bridge potassium cations giving rise to a 2D coordination network which is further stabilised by cross-bridging of each two potassium atoms in [1 0 0] direction by complex cations, [Ag(nia)2]+. Despite different aggregation of 2 and 3 in the solid state, both complexes demonstrate quite similar thermal stability. The amide self-complementary hydrogen bonds appear to be the main driving force for establishing the crystal structures of both 2 and 3.

Editorial handling: G. Giester