, Volume 87, Issue 3-4, pp 241-275
Date: 14 Jun 2006

A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Several magmatic-hydrothermal systems in northeastern Greece (western Thrace and Limnos Island) are highly enriched in tellurides which, in addition to native gold and electrum, represent major carriers of precious metals in the ore. Deposition near the porphyry-epithermal transition for several systems is indicated by field relations and by the presence of key minerals (Pb- and Ag-rich tellurides, Bi-sulfosalts and Bi-tellurides/tellurosulfides). Hessite, stützite, sylvanite, petzite, coloradoite, altaite, unnamed Ag-sulfotelluride, native tellurium and electrum are abundant in intermediate sulfidation quartz-carbonate veins together with zincian tetrahedrite-group minerals, chalcopyrite and galena. The presence of hessite, goldfieldite, native gold and enargite or famatinite suggests deposition at a high sulfidation state. The main stage of telluride deposition took place at ∼275 °C at log fTe2 values of −8.5 to −7.1 and log fS2 values of −10.8 to −9.0, based on the Fe-content in sphalerite and the sulfide-telluride mineralogy. The close spatial association of telluride mineralization with intrusive centers of intermediate composition, the base metal enrichment and the trace element signature involving Au, Ag, Te, Bi, Sn and Mo suggest that ore-forming components were introduced at the porphyry-epithermal transition. Potential sources of tellurium are the high-K calc-alkaline (western Thrace) to shoshonitic (Limnos) intrusive rocks.