Skip to main content
Log in

Visualisation of plastid degradation in sperm cells of wheat pollen

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Like most angiosperms, wheat (Triticum aestivum) shows maternal inheritance of plastids. It is thought that this takes place by cytoplasmic stripping at fertilisation rather than the absence of plastids in sperm cells. To determine the fate of plastids during sperm cell development, plastid-targeted green fluorescent protein was used to visualise these organelles in nuclear transgenic wheat lines. Fewer than thirty small 1–2-μm plastids were visible in early uninucleate pollen cells. These dramatically increased to several hundred larger (4 μm) plastids during pollen maturation and went through distinct morphological changes. Only small plastids were visible in generative cells (n = 25) and young sperm cells (n = 9). In mature sperm cells, these green fluorescent protein (GFP)-tagged plastids were absent. This is consistent with maternal inheritance of plastids resulting from their degradation in mature sperm cells in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes—mechanisms and evolution. Proc Natl Acad Sci U S A 92:11331–11338. doi:10.1073/pnas.92.25.11331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R (2007) Structure, function and inheritance of plastid genomes. In: Cell and Molecular Biology of Plastids. Topics in Current Genetics, vol 19. Springer-Verlag, Berlin

  • Briggle LW (1966) Inheritance of a variegated leaf pattern in hexaploid wheat. Crop Sci 6:43–45

    Article  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44:914–921. doi:10.1093/Pcp/Pcg118

    Article  CAS  PubMed  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458. doi:10.2307/2444695

    Article  Google Scholar 

  • Cran DG, Possingham JV (1972) Variation of plastid types in spinach. Protoplasma 74:345–356. doi:10.1007/Bf01282537

    Article  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348. doi:10.1038/Nbt0498-345

    Article  CAS  PubMed  Google Scholar 

  • Day A, Ellis THN (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen—possible basis for maternal inheritance of chloroplasts. Cell 39:359–368. doi:10.1016/0092-8674(84)90014-X

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Stokrova J (1993) Structure of the needles in the early phases of development in Pinus-Ponderosa Lawson, P. Et Lawson, C. with special reference to plastids. Ann Bot-London 72:423–431. doi:10.1006/anbo.1993.1128

    Article  Google Scholar 

  • Fujiwara MT, Hashimoto H, Kazama Y, Hirano T, Yoshioka Y, Aoki S, Sato N, Itoh RD, Abe T (2010) Dynamic morphologies of pollen plastids visualised by vegetative-specific FtsZ1-GFP in Arabidopsis thaliana. Protoplasma 242:19–33

  • Gardner IC, Abbas H, Scott A (1989) The occurrence of ameboid plastids in the actinorhizal root-nodules of Alnus-Glutinosa (L) Gaertn. Plant Cell Environ 12:205–211. doi:10.1111/j.1365-3040.1989.tb01934.x

    Article  Google Scholar 

  • Greiner S, Sobanski J, Bock R (2015) Why are most organelle genomes transmitted maternally? Bioessays 37:80–94. doi:10.1002/bies.201400110

    Article  CAS  PubMed  Google Scholar 

  • Hagemann R, Schroder MB (1985) New results about the presence of plastids in generative and sperm cells of Gramineae. In: Sexual reproduction in seed plants, ferns and mosses. PUDOC, Wagenigen, pp 53–55

  • Hagemann R, Schroder MB (1989) The cytological basis of the plastid inheritance in angiosperms. Protoplasma 152:57–64. doi:10.1007/Bf01323062

    Article  Google Scholar 

  • Hu S, Zhu C, Xu L, J. S (1979) Ultrastructure of male gametophyte in wheat 1. The formation of generative and vegetative cells. Acta Botanica Sinica 21:208–214

  • Leech RM, Thomson WW, Platt-Aloia KA (1981) Observations on the mechanism of chloroplast division in higher plants. New Phytol 87:1–9. doi:10.1111/j.1469-8137.1981.tb01686.x

    Article  Google Scholar 

  • Lyndon RF, Robertson ES (1976) Quantitative ultrastructure of pea shoot apex in elation to leaf initiation. Protoplasma 87:387–402. doi:10.1007/Bf01624007

    Article  Google Scholar 

  • Matsushima R, Tang LY, Zhang L, Yamada H, Twell D, Sakamoto W (2011) A conserved, Mg2+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development. Plant Cell 23:1608–1624. doi:10.1105/tpc.111.084012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G (2014) Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 26:4084–4101. doi:10.1105/tpc.114.129999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamikawa T, Toyooka K, Okamoto T, Hara-Nishimura I, Nishimura M (2001) Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing French bean leaves: immunocytochemical and ultrastructural observations. Protoplasma 218:144–153. doi:10.1007/Bf01306604

    Article  CAS  PubMed  Google Scholar 

  • Miyamura S, Kuroiwa T, Nagata T (1987) Disappearance of plastid and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy. Protoplasma 141:149–159. doi:10.1007/Bf01272897

    Article  Google Scholar 

  • Mogensen HL (1988) Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proc Natl Acad Sci U S A 85:2594–2597. doi:10.1073/pnas.85.8.2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404. doi:10.2307/2446172

    Article  Google Scholar 

  • Mogensen HL, Rusche ML (1985) Quantitative ultrastructural analysis of barley sperm.1. Occurrence and mechanism of cytoplasm and organelle reduction and the question of sperm dimorphism. Protoplasma 128:1–13. doi:10.1007/BF01273229

    Article  Google Scholar 

  • Nagata N (2010) Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms. J Plant Res 123:193–199. doi:10.1007/s10265-009-0293-x

    Article  PubMed  Google Scholar 

  • Newcomb EH (1967) Fine structure of protein-storing plastids in bean root tips. J Cell Biol 33:143–163. doi:10.1083/Jcb.33.1.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65(65):443–472. doi:10.1146/annurev-arplant-050213-035748

    Article  CAS  PubMed  Google Scholar 

  • Pao WK, Li HW (1946) Maternal inheritance of variegation in common wheat. J Am Soc Agron 38:90–94

    Article  Google Scholar 

  • Pierson ES (1988) Rhodamine-phalloidin staining of F-actin in pollen after dimethylsulfoxide permeabilization. Sex Plant Reprod 1:83–87

    Article  Google Scholar 

  • Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2008) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins. Transgenic Res 17:529–543. doi:10.1007/s11248-007-9126-7

    Article  CAS  PubMed  Google Scholar 

  • Pyke KA (2010) Plastid division AoB PLANTS 2010:plq016-plq016 doi:10.1093/aobpla/plq016

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104:6998–7002. doi:10.1073/pnas.0700008104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, Greenwood JS, Mathur J (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 24:1465–1477. doi:10.1105/tpc.111.095398

  • Schattat MH, Barton KA, Mathur J (2015) The myth of interconnected plastids and related phenomena. Protoplasma 252:359–371. doi:10.1007/s00709-014-0666-4

    Article  CAS  PubMed  Google Scholar 

  • Schroder MB, Hagemann R (1986) Ultrastructural studies on plastids of generative and vegetative cells in Liliaceae.6. Patterns of plastid distribution during generative cell-formation in Aloe secundiflora and Aloe jucunda. Acta Bot Neerl 35:243–248

    Article  Google Scholar 

  • Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, Li Y, Madesis P, Pryor AJ, Timmis JN (2008) Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol 148:328–336. doi:10.1104/pp.108.119107

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci U S A 104:7003–7008. doi:10.1073/pnas.0700063104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530. doi:10.1073/pnas.87.21.8526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SH, Blumwald E (2014) Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated Vacuoles. Plant Cell 26:4875–4888. doi:10.1105/tpc.114.133116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenbach VA, Lin W, Hebert RR (1982) Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69:98–102. doi:10.1104/Pp.69.1.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Rothamsted Research receives support from the Biotechnological and Biological Sciences Research Council (BBSRC) of the UK as part of the 20:20 Wheat® Programme.

Work was supported by grant number GM114215. We thank Caroline Sparks for her invaluable help and also Richard Parkinson and Fiona Gilzean for their assistance in growing the wheat plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huw D. Jones.

Additional information

Handling Editor: Benedikt Kost

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.62 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primavesi, L.F., Wu, H., Mudd, E.A. et al. Visualisation of plastid degradation in sperm cells of wheat pollen. Protoplasma 254, 229–237 (2017). https://doi.org/10.1007/s00709-015-0935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0935-x

Keywords

Navigation