Skip to main content
Log in

Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The coupling of magnetic and electric fields due to the constitutive behavior of a material is commonly denoted as magnetoelectric (ME) effect. The latter is only observed in a few crystal classes exhibiting a very weak coupling which can hardly be exploited for technical applications. Much larger coupling coefficients are obtained in composite materials, where ferroelectric and ferromagnetic constituents are embedded in a matrix. The ME effect is then induced by the strain of the matrix converting electrical and magnetic energies based on the ferroelectric and magnetostrictive effects. In this paper, the theoretical background of linear and nonlinear constitutive multifield behavior as well as the finite element implementation is presented. A nonlinear material model describing the magnetoferroelectric behavior is presented. On this basis, polarization switching in the ferroelectric phase is simulated and the influence on stress distribution and ME coupling is analyzed. Numerical homogenization is performed, in order to supply ME-coupling constants, which are compared to experimental results for both the perfect poling state of a linear calculation and the more realistic case of nonlinear magnetoferroelectricity. The numerical tools supply useful means for the optimization of multiferroic composites with respect to strength and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X.Y., Li H., Wang B.: Theoretical analysis of electric, magnetic and magnetoelectric properties of nano-structured multiferroic composites. J. Mech. Phys. Solids 59(10), 1966–1977 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lu X.Y., Wang B., Zheng Y., Ryba E.: Phenomenological theory of 1–3 type multiferroic composite thin film: thickness effect. J. Phys. D: Appl. Phys. 42(1), 15309 (2009)

    Article  Google Scholar 

  3. Ma F.D., Jin Y.M., Wang Y.U., Kampe S.L., Dong S.: Effect of magnetic domain structure on longitudinal and transverse magnetoelectric response of particulate magnetostrictive–piezoelectric composites. Appl. Phys. Lett. 104(11), 112903 (2014)

    Article  Google Scholar 

  4. Fina I., Dix N., Rebled J. M., Gemeiner P., Martí X., Peiró F., Dkhil B., Sánchez F., Fà àbrega L., Fontcuberta J.: The direct magnetoelectric effect in ferroelectric–ferromagnetic epitaxial heterostructures. Nanoscale 5(17), 8037 (2013)

    Article  Google Scholar 

  5. Auslender M., Liverts E., Zadov B., Elmalem A., Zhdanov A., Grosz A., Paperno E.: Inverse effect of magnetostriction in magnetoelectric laminates. Appl. Phys. Lett. 103(2), 22907 (2013)

    Article  Google Scholar 

  6. Scott J.F.: Data storage: multiferroic memories. Nat. Mater. 6(4), 256–257 (2007)

    Article  Google Scholar 

  7. Fiebig M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38(8), R123–R152 (2005)

    Article  Google Scholar 

  8. Aboudi J.: Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10(5), 867–877 (2001)

    Article  MathSciNet  Google Scholar 

  9. Buchanan G.R.: Layered versus multiphase magneto-electro-elastic composites. Compos. Part B: Eng. 35(5), 413–420 (2004)

    Article  Google Scholar 

  10. Huang J.H., Kuo W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81(3), 1378–1386 (1997)

    Article  Google Scholar 

  11. Kuo H.-Y., Slinger A., Bhattacharya K.: Optimization of magnetoelectricity in piezoelectric–magnetostrictive bilayers. Smart Mater. Struct. 19(12), 125010–125022 (2010)

    Article  Google Scholar 

  12. Li J.Y., Dunn M.L.: Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Int. Mat. Syst. Struct. 9(6), 404–416 (1998)

    Article  Google Scholar 

  13. Nan C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082–6088 (1994)

    Article  Google Scholar 

  14. Lee J.S., Boyd J.G., Lagoudas D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schröder J., Keip M.-A.: Two-scale homogenization of electromechanically coupled boundary value problems. Comput. Mech. 50(2), 229–244 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Miehe C., Rosato D., Kiefer B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86(10), 1225–1276 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moulson A.J., Herbert J.M.: Electroceramics. Materials, Properties, Applications. Wiley, Chichester, Hoboken (2003)

    Google Scholar 

  18. Hwang S.C., Lynch C.S., McMeeking R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43(5), 2073–2084 (1995)

    Article  Google Scholar 

  19. Kamlah M., Liskowsky A.C., McMeeking R.M., Balke H.: Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. Int. J. Solids Struct. 42(9–10), 2949–2964 (2005)

    Article  MATH  Google Scholar 

  20. Arlt G., Sasko P.: Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J. Appl. Phys. 51, 4956–4960 (1980)

    Article  Google Scholar 

  21. Martin, H.-J.: Die Ferroelektrika. Akademische Verlagsgesellschaft Geest & Portig KG, Leipzig (1964)

  22. Merz W.J.: The electrical and optical behavior of BaTiO3 single-domain crystals. Phys. Rev. 76(8), 1221–1225 (1949)

    Article  Google Scholar 

  23. Merz W.J.: Domänenbildung und Domänenwandbewegung in ferroelektrischem BaTiO3. Phys. Rev. 95, 690–698 (1954)

    Article  Google Scholar 

  24. Li Q., Ricoeur A., Enderlein M., Kuna M.: Evaluation of electromechanical coupling effect by microstructural modeling of domain switching in ferroelectrics. Mech. Res. Commun. 37(3), 332–336 (2010)

    Article  MATH  Google Scholar 

  25. Landau L.D., Lifschitz E.M.: Electrodynamics of Continua. Textbook of Theoretical Physics, vol. 8. Akademie, Berlin (1985)

    Google Scholar 

  26. Jackson J.D.: Classical Electrodynamics. Wiley, New York (1998)

    Google Scholar 

  27. Parton V.Z., Kudryavtsev B.A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  28. Bathe K.-J.: Finite Elemente Methoden. Prentice Hall, Berlin (2006)

    Google Scholar 

  29. Katz V.J.: The history of Stokes’s theorem. Math. Mag. 52(3), 146–156 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Suquet P.: Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds.) Homogenization Techniques for Composite Media, pp. 194–275. Springer, Berlin (1987)

    Google Scholar 

  31. Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart-Diaz, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–714 (2005)

  32. Cocks A.C.F., McMeeking R.M.: A phenomenological constitutive law for the behaviour of ferroelectric ceramics. Ferroelectrics 228(1), 219–228 (1999)

    Article  Google Scholar 

  33. Huber J.E., Fleck N.A., Landis C.M., McMeeking R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47(8), 1663–1697 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kessler H., Balke H.: On the local and average energy release in polarization switching phenomena. J. Mech. Phys. Solids 49(5), 953–978 (2001)

    Article  MATH  Google Scholar 

  35. Tang T., Yu W.: Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater. Struct. 18(12), 125026 (2009)

    Article  MathSciNet  Google Scholar 

  36. Etier, M., Gao, Y., Shvartsman, V.V., Lupascu, D.C., Landers, J., Wende, H.: Magnetoelectric properties of 0.2CoFe2O4–0.8BaTiO3 composite prepared by organic method. In: Joint 21st IEEE ISAF/11th IEEE ECAPD/IEEE PFM (ISAF/ ECAPD/PFM), Aveiro, Portugal, pp. 1–4 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artjom Avakian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avakian, A., Gellmann, R. & Ricoeur, A. Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech 226, 2789–2806 (2015). https://doi.org/10.1007/s00707-015-1336-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1336-0

Keywords

Navigation