Twodimensional modeling of viscous liquid jet breakup
 M. Ahmed,
 M. Youssef,
 M. AbouAlSood
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
A twodimensional computational model has been developed to study the evolution and breakup of a viscous laminar liquid jet, using a boundaryfitted curvilinear coordinate system. A system of elliptic partial differential equations for coordinate transformations has been developed to map the moving boundaries’ physical domain of the jet to a simple rectilinear computational domain. The equations developed for the model comprise the transformed twodimensional unsteady Navier–Stokes equations for the liquid jet, grid velocity equations, kinematic boundary conditions, and the Geometric Conservation Law. The resulting systems of equations are solved using an implicit finite difference scheme. Effects of inflow oscillation magnitude, wave number, Weber number, and Reynolds number on the breakup process of jets have been studied. The model predicts the instantaneous shape of the jet surface, formation of the main and satellite drops, and the breakup length and time. These results are compared with available experimental data. The comparisons show a good agreement between measured and computed values of drop sizes and breakup lengths for different Reynolds and Weber numbers. However, at a relatively high Reynolds number of 1,254, the model slightly overpredicts the main drop sizes and underpredicts the satellite drop sizes at a wave number of 0.4. At a low Reynolds number of 587, the model overpredicts the main drop sizes at a lower wave number of 0.3. Moreover, the model underpredicts the satellite drop sizes at a lower wave number of about 0.4 and overpredicts the satellite drop sizes at a wave number of 0.8.
 Hilbing, J.H., Heister, S.D., Spangler, C.A. (1995) A boundaryelement method for atomization of a finite liquid jet. At. Sprays 5: pp. 621638
 Hilbing, J.H., Heister, S.D. (1996) Droplet size control in liquid jet breakup. Phys. Fluids 8: pp. 15741581 CrossRef
 Hilbing, J.H., Heister, S.D. (1998) Nonlinear simulation of a highspeed, viscous liquid jet. At. Sprays 8: pp. 155178
 Rump, K.M.: Modeling the Effect of Unsteady Chamber Conditions on Atomization Process. M.S. Thesis, Purdue University, W. Lafayette, IN, USA (1996)
 Hilbing, J.H.: Nonlinear Modeling of Atomization Process. Ph.D. Thesis, Purdue University, W. Lafayette, IN, USA (1996)
 Sirignano, W.A., Methring, M. (2000) Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26: pp. 609655 CrossRef
 Moses, M.P.: Visualization of Liquid Jet Breakup and Droplet Formation. M.S. thesis, Purdue University, USA (1995)
 Scardovelli, R., Zaleski, S. (1999) Direct numerical simulation of freesurface and interfacial flow. Annu. Rev. Fluid Mech. 31: pp. 567603 CrossRef
 Maronnier, V., Picasso, M., Rappaz, J. (1999) Numerical simulation of free surface flows. J. Comp. Phys. 155: pp. 439455 CrossRef
 Sellens, R.W. (1992) A onedimensional numerical model of the capillary instability. At. Sprays 2: pp. 239251
 Lundgren, T.S., Mansour, N.N. (1988) Oscillations of drops in zero gravity with weak viscous effect. J. Fluid Mech. 194: pp. 479510 CrossRef
 Setiawan, E.R., Heister, S.D. (1997) Nonlinear modeling of an infinite electrified jet. J. Electrostat. 42: pp. 243257 CrossRef
 Hirt, C.W., Nichols, B.D. (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39: pp. 201 CrossRef
 Floryan, J.M., Rasmussen, H. (1989) Numerical methods for viscous flows with moving boundaries. Appl. Mech. Rev. 42: pp. 323341 CrossRef
 Eggers, J., Dupont, T.F. (1994) Drop formation in a onedimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262: pp. 205 CrossRef
 Brenner, M.P., Eggers, J., Joseph, K., Nagel, S.R., Shi, X.D. (1997) Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9: pp. 1573 CrossRef
 Hanchak, M.S.: One Dimensional Model of ThermoCapillary Driven Liquid Jet Breakup with Drop Merging. Ph.D. Thesis, University of Dayton, Dayton, Ohio, USA (2009)
 Ahmed, M., Abou AlSood, M.M., Ali, A. (2011) A one dimensional model of viscous liquid jets breakup. ASME J. Fluid Eng. 133: pp. 11450 CrossRef
 Ambravaneswaran, B., Wilkes, E.D., Basaran, O.A. (2002) Drop formation from a capillary tube: comparison of onedimensional and twodimensional analyses and occurrence of satellite drops. Phys. Fluids 14: pp. 26062621 CrossRef
 Eggers, J. (1997) Nonlinear dynamics and breakup of freesurface flows. Rev. Mod. Phys. 69: pp. 865929 CrossRef
 Adams, R.L., Roy, J. (1986) A one dimensional numerical model of a dropondemand ink jet. J. Appl. Mech. 53: pp. 193197 CrossRef
 Dravid, V., Songsermpong, S., Xue, Z., Corvalan, C.M., Sojka, P.E. (2006) Twodimensional modeling of the effects of insoluble surfactant on the breakup of a liquid filament. Chem. Eng. Sci. 61: pp. 35773585 CrossRef
 Desjardins, O., Moureau, V., Pitsch, H., Sch, H., Tsch, H., Pitsch, V. (2008) Set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227: pp. 83958416 CrossRef
 Yu Pan, Y., Suga, K. (2006) A numerical study on the breakup process of laminar liquid jets into a gas. Phys. Fluids 18: pp. 052101
 Gorokhovski, M., Herrmann, M. (2008) Modeling primary atomization. Annu. Rev. Fluid Mech. 40: pp. 343:34 CrossRef
 Debuc, L., Cantariti, F., Woodgate, M., Gribben, B., Badcock, K.J., Richards, B.E. (2000) A grid deformation technique for unsteady flow computations. Int. J. Numer. Methods Fluids 32: pp. 285311 CrossRef
 Demirdzic, I., Peric, M. (1988) Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids 8: pp. 10371050 CrossRef
 Demirdzic, I., Peric, M. (1990) Finite volume methods for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int. J. Numer. Methods Fluids 10: pp. 771779 CrossRef
 Thomas, P.D., Lombard, C.K. (1979) Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17: pp. 10301037 CrossRef
 Thompson, J.F., Thames, F.C., Mastin, C.W. (1983) TOMCATa code for numerical generation of boundaryfitted curvilinear coordinate systems on field containing any number of arbitrary two dimensional bodies. J. Comp. Phys. 50: pp. 316321 CrossRef
 Uchikawa, S. (1992) Generation of boundary fitted curvilinear coordinate systems for a two dimensional axisymmetric flow problem. J. Comp. Phys. 99: pp. 3955 CrossRef
 Thompson, J.F. (1980) Numerical Solution of Flow Problem Using BodyFitted Coordinate system for a Two Dimensional Axisymmetric Flow Problem. Computational Fluid Dynamics, Hemisphere, Washington
 Thompson, J.F., Warsi, Z.U.A., Mastin, C.W. (1985) Numerical Grid Generation, Foundation and Applications. North Holland, New York
 Christodoulou, K.N., Scriven, L.E. (1992) Discretization of free surface flows and other moving boundary problems. J. Comput. Phys. 99: pp. 3955 CrossRef
 The, J.L., Raithby, G.D., Stubley, G.D. (1994) Surfaceadaptive finitevolume method for solving free surface flows. Numer. Heat Transf. Part B 26: pp. 367380 CrossRef
 Hindman, R.G., Kulter, P., Anderson, D. (1981) Twodimensional unsteady eulerequation solver for arbitrarily shaped flow regions. AIAA J. 19: pp. 424431 CrossRef
 Ferziger, J.H., Peric, M. (1999) Computational Methods for Fluid Dynamics. Springer, Berlin CrossRef
 Ashgriz, N., Mashayek, F. (1995) Temporal analysis of capillary jet breakup. J. Fluid Mech. 291: pp. 163190 CrossRef
 Papageorgiou, D.T. (1995) On the breakup of viscous liquid threads. Phys. Fluids 7: pp. 15291544 CrossRef
 Tjahjadi, M., Stone, H.A., Ottino, J.M. (1992) Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243: pp. 297317 CrossRef
 AnCheng, Ruo., MinHsing, Chang., Falin, Chen. (2008) On the nonaxisymmetric instability of round liquid jets. Phys. Fluids 20: pp. 062105
 Shinjo, J., Umemura, A. (2010) Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Int. J. Multiph. Flow 36: pp. 513532 CrossRef
 Gonzalez, H., Garcia, F.J. (2009) The measurement of growth rates in capillary jets. J. Fluid Mech. 619: pp. 179212 CrossRef
 Spangler, C.H., Hilbing, J.H., Heister, S.D. (1995) Nonlinear modeling of jet atomization in the wind induced regime. Phys. Fluids 7: pp. 964971 CrossRef
 Moses, M.P., Collicott, S.H., Heister, S.D. (1999) Detection of aerodynamic effcts in liquid jet breakup and droplet formation. At. Sprays 9: pp. 331342
 Rutland, D.E., Jameson, G.J. (1970) Theoretical prediction of the sizes of droplets formed in the breakup of capillary jets. Chem. Eng. Sci. 25: pp. 16891698 CrossRef
 Lafrance, P. (1975) Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18: pp. 428432 CrossRef
 Mansour, A., Chigier, N. (1994) Effect of turbulence on the stability of liquid jets and resulting droplet distribution. At. Sprays 4: pp. 583604
 Karasawa, M., Tanaka, M., Abe, k., Shiga, S., Kuraboyashi, T. (1992) Effect of nozzle configuration on the atomization of a steady spray. At. Sprays 2: pp. 411426
 Bousfied, D.W., Stockel, I.H. (1990) The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218: pp. 601617 CrossRef
 Title
 Twodimensional modeling of viscous liquid jet breakup
 Journal

Acta Mechanica
Volume 224, Issue 3 , pp 499512
 Cover Date
 20130301
 DOI
 10.1007/s0070701207661
 Print ISSN
 00015970
 Online ISSN
 16196937
 Publisher
 Springer Vienna
 Additional Links
 Topics
 Industry Sectors
 Authors

 M. Ahmed ^{(1)}
 M. Youssef ^{(1)}
 M. AbouAlSood ^{(1)}
 Author Affiliations

 1. Mechanical Engineering Department, Assiut University, Assiut, 71516, Egypt