, Volume 224, Issue 2, pp 343-364
Date: 11 Nov 2012

A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this paper a new graph-based evolutionary algorithm, gM-PAES, is proposed in order to solve the complex problem of truss layout multi-objective optimization. In this algorithm a graph-based genotype is employed as a modified version of Memetic Pareto Archive Evolution Strategy (M-PAES), a well-known hybrid multi-objective optimization algorithm, and consequently, new graph-based crossover and mutation operators perform as the solution generation tools in this algorithm. The genetic operators are designed in a way that helps the multi-objective optimizer to cover all parts of the true Pareto front in this specific problem. In the optimization process of the proposed algorithm, the local search part of gM-PAES is controlled adaptively in order to reduce the required computational effort and enhance its performance. In the last part of the paper, four numeric examples are presented to demonstrate the performance of the proposed algorithm. Results show that the proposed algorithm has great ability in producing a set of solutions which cover all parts of the true Pareto front.